
VLSI Design Techniques for Floating-Point Computation

By

Bidyut Kumar Bose

B.Tech. (Indian Institute of Technology) 1977

M.S. (Carnegie-Mellon University) 1979

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in the

GRADUATE DMSION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Appro·.·~= 1>. :c~· ... ?.~~ ·/~]!~~-
.... /~a /1

' -:/ _,...- '
,-~..,._-·"· I

1/i~---/ ,'/. (_; /---/..:._-. //.< i,· .

• ' ... < -. ·• ". • • J..,. • • • • • ~ • --;-' • -. • ' " .' ;-- ~//• • \ • . • • •

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
VLSI Design Techniques for Floating-Point Computation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This thesis presents design techniques for floating-point computation in VLSI. A basis for area-time design
decisions for arithmetic and memory operations is formulated from a study of computationally intensive
programs. Tradeoffs in the design and implementation of an efficient coprocessor interface are studied,
together with the implications of hardware support for the IEEE Floating-Point Standard. Algorithm
area-time tradeoffs for basic arithmetic functions are analyzed in light of changing technology. Details of a
single-chip floating-point unit designed into two micron CMOS for SPUR are described, including special
design considerations for very wide datapaths. The pervasive effects of scaling technology on different
levels of design are explored, from devices and circuits, through logic and micro-architecture, to
algorithms and systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

186

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

VLSI Design Techniques for Floating-Point Computation

Bidyut Kumar Bose

Abstract

This thesis presents design techniques for floating-point computation m

VLSI. A basis for area-time design decisions for arithmetic and memory

operations is formulated from a study of computationally intensive programs.

Tradeoffs in the design and implementation of an efficient coprocessor inter-

face are studied, together with the implications of hardware support for the

IEEE Floating-Point Standard. Algorithm area-time tradeoffs for basic arith-

metic functions are analyzed in light of changing technology. Details of a

single-chip floating-point unit designed in two micron CMOS for SPUR are

described, including special design considerations for very wide datapaths.

The pervasive effects of scaling technology on different levels of design are

explored, from devices and circuits, through logic and micro-architecture, to

algorithms and systems.

David A. Patterson
(Committee Chairman)

1

11

Dedicated with love to

-- Baba Ma Joya Didi Tutul--

iii

Acknowledgement

This work would not have been completed without the constant, selfless love and gentle

encouragement of my parents, my best-buddy Joya, and my sisters Krishna and Devjani.

Dave Patterson, my research advisor, has been invaluable with his guidance, advice and

support, and Dave Hodges and Bob Goldman kindly served on my dissertation commit­

tee. A project of this scope would have been impossible without the essential contribu­

tions of many colleagues, including the completion and testing of the FPU functional

simulator by Corinna Lee, the coprocessor interface specification by Paul Hansen, and

layout, circuit, and timing simulation of portions of the FPU datapath and control by Tim

Hu and Debby Jensen. Principal funding for the project was by DARPA under contract

N00039-85-C-0269.

iv

Table of Contents

CHAPTER 1. Introduction .. 1

1.1. Motivation 2
1.2. Thesis Outline 6
1.3. References ... 9

CHAPTER 2. Floating-point Computation Characteristics & Accelerators 10

2.1. Characteristics of Floating-point Computation 11
2.1.1. Frequently Used Functions .. 11
2.1.2. Two Benchmarks, Linpack and Livermore Loops 13
2.1.3. Dynamic Data From Two Real Programs 17
2.2. Comparison of Floating-point Processors ... 20
2.2.1. Comprehensive Floating-point Processors 21
2.2.2. Basic Floating-point Processors 22
2.2.3. Floating-point Performance Comparison 24
2.3. Summary ... 27
2.4. References ... 29

CHAPTER 3. Design Tradeoffs for VLSI Floating-Point Units 30

3.1. Coprocessor Interface Design 32
3.1.1. Communication Overhead in Floating-Point Coprocessors 33
3.1.2. Communication Overhead and Total Loop Execution Time 34
3.1.3. Parallel Execution Between CPU and FPU 39
3.2. Implementing the IEEE Floating-Point Standard 42
3.2.1. Data Formats .. 42
3.2.2. Memory and Arithmetic Operations 44
3.2.3. Exception Detection and Handling .. 46
3.3. Arithmetic Algorithms and Implementation Technology 48
3.3.1. Add/Subtract Design Issues ... 50
3.3.2. Multiply Design Issues .. 52
3.3.3. Divide Design Issues .. 55
3.4. Summary ... 57
3.5. References ... 59

v

CHAPTER 4. Add/Subtract Datapath Design Considerations 61

4.1. Implementation Considerations 62
4.2. The Exponent & Fraction Front-Ends ... 64
4.2.1. Unpacking and Packing Data ... 66
4.2.2. Handling Special Operands .. 67
4.2.3. Conversion to Single and Double Precision 68
4.2.4. The Register File .. 68
4.3. The Exponent Datapath ... 71
4.3.1. The Exponent Difference Unit ... 73
4.3.1.1. A Fast Adder/Subtractor ... 73
4.3.2. Overflow and Underflow Detection ... 78
4.4. The Fraction Datapath ... 79
4.4.1. The Shifter ... 82
4.4.1.1. The Shifter Array .. 83
4.4.1.2. The Sticky Logic 84
4.4.1.3. The Shifter Decoder .. 85
4.4.2. The Leading One's Detector .. 88
4.5. Rounding ... 89
4.6. Summary ... 91
4.7. References ... 93

CHAPTERS. Multiply/Divide Datapath Design Considerations 94

5.1. Implementation Considerations .. 95
5.2. The Multiplier ... 97
5.2.1. The Algorithm .. 97
5.2.2. The Multiply Inner Loop ... 99
5.2.3. Rounding .. 101
5.3. The Divider ... 104
5.3.1. The Algorithm .. 104
5.3.2. The Divide Inner Loop ... 106
5.3.3. Quotient Selection .. 108
5.3.4. Rounding .. 109
5.4. Summary ... 111
5.5. References 113

CHAPTER 6. Control Design Considerations ... 114

6.1. FPU Control Unit Overview ... 115
6.2. The Instruction Decoder 116
6.3. Load-Store Control ... 118
6.4. Arithmetic Control .. 120
6.4.1. The State Machine ... 121

vi

6.4.2. The Cycle Counter ... 123
6.4.3. PLA Partitioning .. 124
6.5. Clock Generation, Distribution and Skew 125
6.6. Swnmary ... 135
6. 7. References 137

CHAPTER 7. Implications of Scaling Technology 138

7 .I. Scaling at the Device/Circuit Level 139
7.2. Scaling at the Logic/Micro-architectural Level 141
7.3. Scaling and Arithmetic Algorithms .. 143
7.4. Scaling and Multiple Function Units .. 147
7.5. Scaling at the Architectural Level .. 151
7.6. Swnmary ... 154
7.7. References ... 156

CHAPTER 8. Conclusions ... 158

8.1. Swnmary ... 158
8.2. Future Work .. 162
8.3. References ... 164

APPENDICES 167

Appendix 1. SPUR FPU die photograph ... 168
Appendix 2. SPUR FPU Instruction Set and Cycle Times 169
Appendix 3. SPUR FPU Timing Wavefonns .. 170

1

1 Introduction

From their very inception, computers have been driven by the forcing function of

scientific computation towards ever higher performance. Since scientific and engineering

computations are dominated by floating-point calculations, these have had to be speeded

up to sustain the drive for higher performance. The evolution of VLSI technology

towards finer geometries has been another dominant factor in performance improvement.

This in turn has precipitated a need for the evolution of design techniques for efficient

implementation of floating-point arithmetic in VLSI. This thesis develops design tech­

niques for fast floating-point computation in VLSI.

Chapter 1 2

Computationally intensive programs are studied to formulate a basis for area-time

design decisions, emphasizing memory and arithmetic operations. Design tradeoffs for

single-chip floating-point units are investigated at the algorithmic and architectural level.

Logic, circuit and layout design considerations for VLSI datapath and control units are

studied, leading to design projections considering the implications of scaling technology.

As a case study, a floating-point unit (FPU) is designed in CMOS VLSI as part of

the SPUR project [Hill86], which supports extended-precision arithmetic and uses

hardwired control, while implementing the IEEE floating-point standard [Cody84]. Even

though the design is specific to floating-point processors and CMOS technology, most of

the ideas presented here, and especially the design method and analysis of design

tradeoffs, extrapolate to general-purpose processor design and to VLSI technology in

general. For example, key components in CPU and FPU datapaths are very similar, and

tradeoffs in control PLA partitioning apply to all processor designs in any VLSI

technology.

This chapter provides motivation for the research undertaken and reported here, and

proceeds to outline the remainder of this thesis.

1.1. Motivation

High speed floating-point computation is essential for a large class of problems, like

computer modeling and simulation, computer graphics, image processing, meteorology,

hydrodynamics, and computer-aided design/ computer-aided manufacturing.

Fundamental to the analysis of a physical system is a need to solve systems of

simultaneous partial differential equations, which are approximated with an array of

Chapter 1 3

discretely placed points in the space-time continuum. The greater the number of points,

the smaller are the truncation errors introduced by representing continuous independent

variables as discrete points, which are in tum evaluated using finite difference or finite

element grid-based simulation techniques. Floating-point arithmetic has generally been

used for these applications, since integer arithmetic lacks the range and precision for

computation of most of these real-world needs.

Traditionally, floating point arithmetic has been slow in software. Even basic

arithmetic operations like addition require long shifts for fraction alignment, and

rounding, evaluation of normalizing distance, and overflow/underflow detection can

involve many cycles of bit-manipulation. Even with some hardware support, scientific

computation can be expensive to implement in software. For example, it is much more

efficient to compute special functions if the internal working precision of a machine

allows extra range and precision. If the operand (x) and result of lnx (natural logarithm

of {x}), say, are in double precision (64 bits), but it is possible to compute intermediate

results in extended precision (80 bits), the code for this transcendental function gets

much simpler, cleaner, and faster [Kaha85].

Floating-point arithmetic has traditionally been expensive in hardware. Mainframe

computers invest significantly in logic, boards, power dissipation and design time to

provide floating-point support. Only recently is VLSI technology making it possible to

have fast, inexpensive floating point arithmetic [Fand85]. In less than eight years, more

than a dozen such processors have been designed, and the trend continues at an even

accelerated pace.

Chapter 1 4

One of the primary reasons for this resurgence is the evolution of VLSI technology

to finer geometries. At present levels of integration, it is possible to build single chips

with more than 100,000 transistors, allowing designers a choice of algorithms for

arithmetic functions. CMOS technology, with its many advantages including low static

power dissipation and high noise immunity, is considered to be the technology of choice

for present-day processors [Myer86].

By their very nature, floating-point accelerators require very wide datapaths (64-bit

fractions in extended precision), and improvements in interconnect have made it possible

to build fast, wide datapaths. In particular, multiple layers of metal interconnect have

greatly reduced interconnect delays that would otherwise have been present with more

resistive control lines. For example, a polysilicon control line driving 2pF across half a

chip, (500011 at 211 pitch, i.e. 2500 squares, at 50 ohms per square) would have a

distributed RC delay (.68RC) of around 200ns! Contrast this with attempts to achieve

processor cycle times under 1 OOns.

Another factor in the resurgence of floating-point processors is the emergence of the

IEEE Floating-point Standard 754 [Cody84] as an industry-wide standard for floating­

point computation. Features of this standard include the specification of formats of

operands and results for several arithmetic operations, conversions between numbers of

different formats, and exception detection and handling. Supporting the standard ensures

the accuracy, predictability and portability of numerical software.

Design techniques need to be developed to take full advantage of the evolving

technology and the emerging IEEE standard, and that is the subject of this dissertation.

The thesis ranges from a study of the characteristics of scientific computation, through

Chapter 1 5

architectural and micro-architectural issues, to the details of logic and circuit design and

the impact of scaling technology. A single-chip floating-point unit is also implemented,

to better appreciate the tradeoffs through actual design. This FPU is one of three custom

chips built as part of the SPUR project. SPUR, a multiprocessor workstation being

developed at the University of California at Berkeley, is a research vehicle for studying

symbolic and scientific computation in parallel processors. Research is being conducted

in several areas: integrated circuits and technology, computer architecture, operating

systems, and programming languages, and the system configuration is shown in Figure 1.

~---------~~~~~~::~~-~~~:~:N~~ .. ~--~
: ,EJtr ,

!i ~=aa:l'
, i ~ORY i

----------------------J \--------

SPL"R BUS

Figure 1.1. A SPUR Multiprocessor workstation system. The system includes as many as 12
processor nodes, each with its own central processor (CPU), floating-point unit FPU, and
cache memory. The main components of the CPU are an on-chip instruction cache, a 32-bit
datapath and control, and the FPU consists of exponent and fraction datapaths, together with
separate control for arithmetic and memory operations. The shared global memory is accessed
through a modified TI NuBus.

Chapter 1

Salient features of the system include:
• architectural support for the Common Lisp programming language and the
IEEE Standard for binary floating-point arithmetic,
• 6 to 12 high-performance processors per workstation with a modified NuB us
backplane to memory and I/0 devices,
• a common memory accessible by all nodes for sharing between cooperating
processes,

• a 128-Kbyte direct-mapped cache between each CPU and common memory
that significantly reduces bus traffic and effective memory access time,
• caching of virtual addresses, eliminating address translation on cache hits,
and

• a hardware snooping mechanism that guarantees data shared between two or
more processes is always consistent.

1.2. Thesis Outline

6

The main body of the thesis consists of six chapters, beginning with a review of

floating-point computation in Chapter 2, and continuing through design and

implementation considerations of floating-point units, to the implications of scaling

technology in Chapter 7. The final chapter concludes this thesis with a recapitulation of

the issues addressed, emphasizing contributions in analysis and design, and finishing with

suggestions and directions for future work.

To provide good support for scientific computation, we should understand what it is

that computationally-intensive programs do. Chapter 2 begins by presenting a picture of

the nature of scientific computation. Program measurements from the literature are

collected, and critical, time-consuming loops of some representative programs are

studied. The chapter concludes with a review of existing floating-point accelerators

implemented in silicon. The architecture, instruction set design and performance of

some of these processors are studied to better evaluate design and implementation

Chapter 1 7

considerations. Even though some multi-chip implementations are considered, the

emphasis is on single-chip implementations, since the tradeoffs are quite different for the

two cases.

As floating-point units are getting faster, the problem of supplying them operands

from memory is getting more severe. Chapter 3 identifies components of interface

overhead, comparing the interfaces of two popular floating-point units with the

coprocessor interface for SPUR, and outlining means of reducing overhead. The

implications of implementing the IEEE Standard with a combination of hardware and

software are presented, considering available VLSI technology. Of particular interest is

support for extended precision arithmetic in a fast, non-microcoded machine. Chapter 3

also examines area-time tradeoffs in matching appropriate algorithms to available

technology. Algorithms for all the basic arithmetic operations -- add, subtract, multiply

and divide -- are considered, and their VLSI implementation implications presented.

Chapters 4 and 5 present datapath design considerations for performing data

manipulations on memory operations and arithmetic functions. Among the arithmetic

operations, add and subtract functions are discussed in Chapter 4, while Chapter 5

concentrates on multiplication and division. Area-time tradeoffs that went into the logic,

circuit and layout design decisions of the key building blocks of the SPUR floating-point

unit are presented.

Design considerations for the control of memory and arithmetic operations in the

SPUR FPU are presented in Chapter 6. The control of the FPU interface with the rest of

the system is also described. Different components of the control unit are discussed,

including the load-store pipeline, the state machine, and sequencer. Issues involving

Chapter 1 8

clock generation, distribution and skew are also considered, especially m light of

dynamic design techniques.

The effects of technology scaling on scientific computation are discussed in Chapter

7. The effects of scaling are pervasive across all levels of processor design, and all of

these levels are inspected in turn, beginning with devices and circuits, through logic and

micro-architecture, to algorithms and system architecture.

The appendices include design details specific to our case study, the SPUR FPU. A

die photo of the SPUR FPU is shown in Appendix 1. The FPU instruction set and

performance specifications of these instructions are presented in Appendix 2. Appendix

3 contains timing waveforms for various operations of the SPUR FPU, including memory

and arithmetic operations.

Chapter 1 9

1.3. References

[Cody84] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hansen, D. Hough, W. Kahan, R.
Karpinski, J. Palmer, F. N. Ris and D.Stevenson, A Proposed Radix- and
Word-length-independent Standard for Floating-point Arithmetic, IEEE
Micro, Vol. 4, No.4 (August 1984).

[Fand85] J. Fandrianto and B. Y. Woo, VLSI Floating-point Processors, Proc. Seventh
IEEE Int'l. Symposium on Computer Arithmetic(May 1985), pp. 93-100.

[Hill86] M.D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G.
A. Gibson, P. M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M.
Pendleton, S. A. Ritchie, D. A. Wood, B. G. Zorn, P. N. Hilfinger, D.
Hodges, R. H. Katz, J. Ousterhout and D. A. Patterson, Design Decisions in
SPUR, IEEE Computer, Vol. 19, No. 11 (November 1986).

[Kaha85] W. Kahan, personal communication (April 1985).

[Myer86] G. J. Myers, A. Y. C. Yu and D. L. House, Microprocessor Technology
Trends, Proceedings of the IEEE, Vol. 74, No. 12 (December 1986), pp.
1605-1622.

Floating-point Computation
Characteristics and Accelerators

10

The first pan of this chapter presents a picture of the nature of scientific

computation, in an attempt to understand the behavior of numeric programs. Program

measurements from the literature are collected, and critical, time-consuming loops of

some representative programs are studied. This should provide insight into features that

a floating-point unit should have, to enable it to execute such programs efficiently. This

information will be used in successive chapters during the detailed discussions on design

and implementation issues for VLSI floating-point processors.

The second pan of this chapter reviews existing floating-point accelerators

implemented in silicon. Rapid advances in integrated circuit technology are enabling

significant developments in VLSI floating-point processor design. More than a dozen

Chapter 2 11

processors have been designed in the last eight years, and the frequency of new designs is

increasing. The instruction set features, interface characteristics and performance of

several implementations will be compared, and their design considerations evaluated.

The emphasis will be on single-chip VLSI implementations, even though a few multi-

chip designs will be included for comparison.

2.1. Characteristics of Floating-point Computation

Measurement of the important characteristics of scientific programs is essential for

an understanding of the nature of floating-point computation. The kinds of operations

performed, the nature of operands used, and the control sequences are studied here. The

relative frequency of operations like add, subtract, and multiply should indicate design

emphasis on required functional units, while the type, size, structure, and access

frequency of operands used, should determine the memory organization. Studying the

patterns of control transfer should provide insight into the nature and amount of

extractable parallelism.

2.1.1. Frequently Used Functions

As a starting point, we begin by presenting three well-known functions [Kaha85]

which form the core of many floating-point intensive applications:
Gaussian Elimination (GE) fori= 1 ton do

X[i] := X[i] + (K * Y[i])

Dot Product (DP) for i = 1 to n do
P := P + (X[i] * Y[i])

Chapter 2

Polynomial Evaluation (PE) for i = 1 to n do
P := (P * K) + C[i]

or as a continued fraction,
for i = 1 to n do

P := D[i]/P + C[i] + K

12

Some common characteristics are evident from inspection of these simple

equations. The operands are constants or array elements which are accessed in a regular

arithmetic progression. The step size is one and the arrays are one-dimensional. The

floating-point operations involve simple operators, with add and multiply being most

frequent. The number of operations is of the order of the number of memory references,

and while computation proceeds on current array elements, subsequent array elements

can be loaded from memory simultaneously. A number of integer operations are needed

to control the loop and are independent of the floating-point operations, allowing possible

parallelism. Characteristics of floating-point operations for these loops is summarized in

Table 2.1.

Table 2.1: Characteristics of three loops- GE, DP, PE.
Loop Add Mult- Div- Mem Mem FP operations
No. & Sub iply ide Read Write per mem. ref.
GE 1 1 - 2 1 0.67
DP 1 1 - 2 - 1.00
PEl 1 1 - 1 - 2.00
PE2 2 - 1 2 - 1.50

Total 5 3 1 7 1 9/8
Mean 1.25 0.75 0.25 1.75 0.25 1.13

This table indicates that operand reads occur about seven times as often as operand writes, and
there are about eight memory references for every nine floating-point operations. Add and
subtract operations occur almost twice as often as multiply, and divides occur about a third as
often.

How representative is this set of equations? To answer this question, we look at

several inner loops of programs written for scientific applications in the next sub-section.

Chapter 2 13

2.1.2. Two Benchmarks, Lin pack and Livermore Loops

Linpack [Dong79] is a set of programs for solving sets of linear equations; key

routines perform LU decomposition and Gaussian elimination. The core of the

subroutine performing matrix LU decomposition is shown below:

DO 60 K = N, 1, -1
XK=X(K)
DO 50 I = 1, K -1

X(I) = X(I) + A(I,K)*XK
50 CONTINUE
60CONTINUE

As we can see, this is quite similar to the loop (GE) above, the only difference being the

replacement of one one-dimensional array reference by a two-dimensional array

reference.

The single and double precision Gaussian elimination routines in Linpack, sgefa

and dgefa, do Gaussian elimination and backward substitution by calling subroutines

saxpy and daxpy and functions sdot and ddot, whose cores are shown below:

I. DO 50 I= MP1,N,4
DY(I) = DY(I) + DA *DX(I)
DY(I+l) = DY(I+l) + DA*DX(l+l)
DY(l+2) = DY(l+2) + DA*DX(l+2)
DY(l+3) = DY(I+3) + DA*DX(l+3)

50 CONTINUE

II. DO 101 = l,N
DTEMP = DTEMP + DX(IX)*DY(IY)
DDOTCOUNT = DDOTCOUNT + 1
IX= IX+ INCX
IY = IY + INCY

lOCONTINUE

Once again, the first loop consists of multiple applications of (GE) above, for four pairs

of elements of arrays DX and DY, and the second loop is simply a dot product (DP)

above.

Chapter 2 14

The Livermore Loops [McMa86] are a set of 24 program kernels, taken from a wide

range of numerically intensive application programs ranging from hydrodynamics

through two-dimensional transport to Planckian distributions. Kernels 3, 5, and 21

involve simple operations on matrices, including inner product, tri-diagonal elimination

and matrix product. Kernel 3 is the same as loop (DP), and kernels 5 and 21 are shown

below:

DO 5 I= 2,N
5 X(l)= Z(I)*(Y(I) - X(l-1))

DO 21 J= 1,N
PX(I,J)= PX(I)) +VY(I,K) * CX(K))

21 CONTINUE

We see two-dimensional arrays in kernel 21, but the form of both kernel calculations is

similar to (GE) above, with the constant replaced by another array element. Kernels 4, 6,

and 19 involve sets of linear equations, and these exhibit a form very similar to the

examples above.

Kernel 9, called Integrate Predictors, is representative of several physical

applications kernels, like kernels 7, 8 10, 13, 14, 18, and 23. These represent one and

two-dimensional particles in cells, transport of discrete ordinates, two-dimensional

hydrodynamics, and so on. Below is kernel 9:

DO 9 I= 1,N
PX(1,1)= DM28*PX(13,1) + DM27*PX(12,1) + DM26*PX(ll,I) +
DM25*PX(l0,I) + DM24*PX(9,1) + DM23*PX(8,1) +
DM22*PX(7,1) + CO*(PX(5,1) + PX(6,1))+ PX(3,1)

9 CONTINUE

Several elements of array PX are multiplied by constants DM, and a sum of products

evaluated; in some kernels, DM is also an array. Even though there is a lot more

computation in this equation, the ratio of floating-point operations to memory references

Chapter 2 15

is close to unity, and the loop control is still related to the array index and not on the

array data, as in the first three examples.

Kernels 11 and 12 are a simple sum and difference of the elements of a vector.

Kernel 1 contains an inner loop from a hydrodynamics fragment simulator, and conforms

to previous examples.

Kernels 15, 16, 17, 20, 22 and 24 contain all the floating-point compare instructions

in the 24 loops. They all involve accessing arrays in a regular manner, but control

sequencing depends on the actual data accessed. An example code segment from kernel

20 is shown below. The frequency of compare instructions is small compared to

arithmetic instructions.

DO 20 L= 1 ,LOOP
DO 20 K= 1,N

DI= Y(K)-G(K)/(XX(K)+DK)
DN=0.2
IF(DI .NE. 0.0) DN= MAX(O.l,MIN(Z(K)/DI, 0.2))
X(K)= ((W(K)+V(K)*DN)* XX(K)+U(K))/(VX(K)+V(K)*DN)
XX(K+ 1)= (X(K)- XX(K))*DN+ XX(K)

20 CONTINUE

Table 2.2 summarizes the characteristics of the 24 Livermore Loops. The

frequency distribution of arithmetic operations and conditionals is shown, as well as

unique memory accesses for read and write. The ratio of floating-point operations to

memory references is noted in the last column.

Note the similarity in the trends represented in Tables 2.1 and 2.2. The relative

frequency of individual operations is similar in both cases, and so is the ratio of memory

reads to memory writes and floating-point operations to memory references.

Chapter 2

Table 22: Characteristics o the 24 Livermore Loops.
Loop Add Mult- Div- Square Com- Mem Mem FP operations
No. &Sub iply ide Root pare Read Write per mem. ref.

1 2 3 - - - 3 1 1.25
2 2 2 - - - 5 1 0.67
3 1 1 - - - 2 - 1.00
4 1 2 - - - 4 2 0.50
5 1 1 - - - 3 1 0.50
6 1 1 - - - 3 1 0.50
7 8 8 - - - 9 1 1.60
8 20 12 - - - 27 6 0.97
9 9 8 - - - 10 1 1.55

10 9 - - - - 10 10 0.45
11 1 - - - - 2 1 0.33
12 1 - - - - 2 1 0.33
13 9 - - - - 19 7 0.35
14 10 1 - - - 21 12 0.33
15 2 6 2 2 7 20 4 0.79
16 5 4 - - 5 11 - 1.27
17 6 2 - - 2 5 5 1.00
18 26 14 2 - - 46 6 0.81
19 4 2 - - - 6 2 0.75
20 6 4 2 - 2 13 2 0.93
21 1 1 - - - 3 1 0.50
22 - 3 2 - 1 6 3 0.67
23 6 5 - - - 11 1 0.92
24 - - - - 1 2 - 0.50

Total 131 80 8 2 18 243 69 239/312
Mean 5.5 3.3 0.3 0.1 0.8 10.1 2.9 0.77

This table indicates that operand reads occur about three times as often as operand writes, and
there are about four memory references for every three floating-point operations. Add and
subtract operations occur almost twice as often as multiply, and divides occur about a tenth as
often. Compares occur about a fourth as often as multiply, while a special function, square
root, occurs a third as often as divide.

16

Note also the scope for parallelism in the above examples at various levels. When

long expressions are computed, with no control transfers in between, several floating-

point operations can be executed in parallel if multiple function units are available. For

example, independent sub-expressions involving additions and multiplications can be

evaluated simultaneously if there are independent add and multiply units. Again, integer

or loop counter calculations can be computed in parallel with floating-point computation.

Finally, address calculation and memory references can also proceed in parallel with

Chapter 2 17

floating-point computation. This is especially important because of the relatively high

ratio of memory accesses to floating-point operations, and the problem is compounded

when memory accesses involve the transfer of 64-bit words.

2.1.3. Dynamic Data From Two Real Programs

So far, we have been looking at the static distribution of operands and operations in

a variety of inner loops of numeric software. To see if and how the picture changes with

the dynamic behavior of large scientific programs, let us now look at profiles gathered by

Lin and Leung [Leun86] by running two real programs, SPICE [Nage73] and Lattice

[Brod86], both developed at Berkeley. SPICE is a circuit simulator and Lattice simulates

different lattice filter structures. Analog and digital circuits in different technologies are

used as inputs to SPICE, to minimize sensitivity to input data, and the analytical (Level

2) device models are used. Instruction frequency is measured for different types of

analyses: DC, AC, and transient. Similarly, speech and other data, including random, are

used as inputs to Lattice. Table 2.3 shows the measured frequency of floating-point

operations for these two programs, totaled over all the different inputs.

Lattice does not make any calls to special functions like transcendentals, while

SPICE makes some references, especially when performing transient analysis. Table 2.4

shows the frequency of basic floating-point operations with calls to special functions

decomposed into the basic functions.

Table 2.5 shows the percentage increase in frequency of each basic function after

the special functions are decomposed. It is critical not to ignore some special functions

just because they occur infrequently. Examining a profile of the SPICE run, for example,

Chapter 2

Table 2.3: Frequency of Floating-point Operations for Two Real Programs.
Operations Lattice SPICE SPICE SPICE SPICE SPICE

(Dbl Precision) Filter DC AC Transient Total Ratio
Add 3,186,800 317,058 168,643 1,337,381 1,823,082 0.54
Subtract 3,980,400 399,668 238,970 1,818,824 2,457,462 0.72
Multiply 9,548,000 495,528 358,680 2,544,974 3,399,182 1.00
Divide 793,600 177,312 52,726 917,469 1,147,507 0.34
Compare 1,587,200 259,534 56,681 1,124,872 1,441,087 0.42
Sq. Root - 24,581 2,465 126,162 153,208 0.05
Sine - 5 79 5 89 0.00
Cosine - 942 153 5,139 6,234 0.00
Arc Tangent - 937 74 5,133 6,144 0.00
Exp - 3,593 465 44,708 48,766 0.01
Log - 3,558 382 49,882 53,822 0.02
LoglO - 2 170 2 174 0.00

Other special functions, such as arc sin, were also monitored, but did not register any oc­
currence for the set of inputs. Lattice shows more multiply operations than add and subtract
combined, while SPICE shows a ratio similar to the static distribution of the Livermore Loops.
Lattice also shows relatively fewer Compare operations compared to SPICE.

Table 2.4: Increased basic operations with special functions decomposed.
Operation SPICE SPICE SPICE SPICE SPICE

(Dbl Precision) DC AC Transient Total Ratio
Add 533,206 195,009 2,876,128 3,604,343 0.66
Subtract 411,890 240,525 1,961,520 2,613,935 0.48
Multiply 752,910 389,319 4,313,842 5,456,071 1.00
Divide 314,179 67,171 1,711,441 2,092,791 0.38
Compare 314,257 62,272 1,426,741 1,803,270 0.33

Ttie last column shows the ratio of basic operations normalized to multiply. This ratio has not
changed significantly even after all special function calls have been reduced to a sequence of
basic operations.

Table 25: Percentaf!,e increase in basic operations
Operation SPICE SPICE SPICE SPICE

(Db! Precision) DC(%) AC(%) Transient (%) Total(%)
Add 68.1 15.6 115.1 97.7
Subtract 3.1 0.7 7.8 6.4
Multiply 51.9 8.5 69.5 60.5
Divide 77.2 27.4 86.5 82.3
Compare 21.1 9.9 26.8 25.1

It is interesting to note that even though the absolute frequencies of the special functions like
square root and exponential seem to be a small percentage of the total operations, once decom­
posed the special functions add a significant percentage to the frequency of the basic opera­
tions.

18

Chapter 2 19

on a SUN 3/160 with a Motorola 68881 floating-point unit, we measured that

transcendental functions account for 16.1% of the total execution time. If transcendental

functions are a factor of 10 slower, their evaluation would account for 10* 16/(84+ 1 0* 16)

or 71% of the time. And if transcendentals evaluate 100 times slower, they could

account for 100* 16/(84+ 1 00* 16) or 95% of the time! Since transcendental function

evaluation is frequently reduced to a sequence of basic operations, it is critical that these

basic operations evaluate as fast as possible.

There have been several studies of various programs and benchmarks that show the

relative frequency of these basic operations. We summarize results from Berkeley with

those of Knuth [Knut71] and Gibson [Gibs70] in Table 2.6. We see that add/subtract

operations occur from 1.5 to 2.5 times more frequently than multiply operations, which

in turn are 2 to 3 times as frequent as divide operations. The Lattice Filter seems to be an

exception in that divisions occur much less often than in the others, and additions occur

less frequently than multiplications.

Table 2.6 suggests chip resource allocation for a balanced design, where the

proportion of hardware for add vs. multiply vs. divide should be close to the ratio of

operation frequency. For example, a large chip area invested in an array multiplier may

not be cost-effective without a proportionately fast adder and divider. If the product of

operation frequency and operation delay for all the basic operations is almost equal, then

the designers of software algorithms will not be tempted to devise devious means to

achieve performance, which they would resort to if this product is very different for the

distinct basic functions.

Chapter 2

Table 2.6: Relative Frequencies of Floating Point Operations
Source Add,S ubtract,Compare Multiply Divide

Knuth 2.30 1.00 0.38
Gibson Mix 1.80 1.00 0.39
Lattice Filter 0.75 1.00 0.08
SPICE 1.45 1.00 0.35

Operation frequencies are normalized to Multiply. Divides occur about a third as often, and
Adds occur between 1.5 and 2.5 times as often as Multiplies.

20

Now that we have a picture of the nature of scientific computation, let us see if

current designs of floating-point accelerators reflect this view, and what features enable

efficient execution of numeric software.

2.2. Comparison of Floating-point Processors

Advances in integrated circuit technology are largely responsible for the relatively

recent appearance of floating-point accelerators in VLSI. For example, the earliest

floating-point units -- the Intel 8087 and the Motorola 68881 -- appeared in 1980 and

1983 respectively, and several floating-point units have been released in the last couple

of years. Current VLSI floating-point processors fall into two main categories,

comprehensive and basic, based on their functionality [Fand85] .. The comprehensive

floating-point processors usually have a rich repertoire of functions, on-chip storage and

control store. They rely on built-in microcode routines to execute the basic arithmetic

operations as well as many of the special operations like square root and logarithm. The

basic floating-point units, on the other hand, tend to provide a small, basic set of

functions, using dedicated hardware to optimize the performance of specific arithmetic

functions. While the comprehensive processors provide generality and versatility with

moderate performance, the basic processors can provide higher performance because of

Chapter 2 21

their specificity.

2.2.1. Comprehensive Floating-point Processors

Examples of comprehensive floating-point processors include the Intel 8087/80287,

National 32081, Motorola 68881, Zilog 8070, AMD 9511A/9512 and Fairchild F9450

[Nave80] [Gavr86] [Shah84] [Heni83]. Table 2.7 summarizes the instruction set features

for four of these processors, including the year they were released.

Table 2.7: Instruction set features of four comprehensive FPUs.
Instruction Intel Motorola National Zilog
Set Design 8087 68881 32081 8070

Year sampled 1980 1983 1983 1985
IEEE Std.#754 coverage complete complete subset complete
Instruction length 16-32 32-48 8-24 16-32
Number of formats 2 6 2 2
Number of data types 7 7 5 7
Max. # operands/instr. 2 2 2 6
F.P. Instructions
+,-,X,+, compare • • • •
Square root • • •
Data transfer • • • •
Data conversion •
Integer operations • •
Transcendentals • • •

Most comprehensive FPUs cover the IEEE Floating-point standard, and provide instructions
for special functions like square root and transcendentals. In particular, the Intel and Motorola
FPUs are full-function processors. They do not need data conversion instructions because
results are computed in any one of three desired precisions.

These processors tend to display rather different interface characteristics, and these

are summarized in Table 2.8. The implementation technologies are also quite different,

leading primarily to a wide range of clock frequencies. All of them allow parallel

execution between floating-point and integer execution units, even though some of these

systems are more tightly coupled than others.

Chapter 2

Table 2.8: Interface characteristics of four comprehensive FPUs.
Interface Intel Motorola National Zilog

Characteristics 8087 68881 32081 8070
Data bus width 16 8,16,32 16 32
of operand regs 8 8 8 10
Register width 80 80 32 80
Clock Frequency 5MHz 16.7MHz lOMHz IOMHz
Technology 3J.LHMOS 2.25J.L HCMOS 3J.LXMOS 2J.LXMOS
Control implementation microcode microcode hardwired microcode
Extended Precision yes yes no yes
Exception detection hardware hardware hw/software hw/software
Exception handling hardware hardware software hw/software

Most of these comprehensive FPUs have microcoded control and provide support for extended
(80-bit) precision arithmetic. Exception detection is mostly done in hardware, and exception
handling is also done by hardware in several cases.

2.2.2. Basic Floating-point Processors

22

Examples of basic floating-point processors include the Weitek 1164/65 chip set,

AMD 29325, Fairchild Clipper, Analog Devices ADSP 3210/3220 chip set, Western

Electric WE32106 and MIPS R3010 [Fand85] [Trou86] [Neff86] [Rowe88]. Table 2.9

summarizes the instruction set features for four of these processors, including the year

they were released. Weitek splits floating-point operations among two chips, one for

Multiply and the other for Add, Subtract and Divide. Even though the algorithmic

tradeoffs are quite different going from one-chip to multi-chip design, it is included here

as a comparison. The Fairchild Clipper, on the other hand, integrates the integer and

floating-point units on a single chip. Even with severe die size constraints, it achieves

fairly high floating-point performance by virtue of its high clock rate, as we shall see

later in Table 2.11.

Table 2.10 shows the interface characteristics of these basic floating-point

processors. While exception detection is usually done by these processors in hardware,

most exception handling is normally left for software. One common exception is

Chapter 2

Table 2.9: Instruction set features of four basic FPUs.
Instruction Weitek Fairchild Western Elec. MIPS
Set Design 1164/1165 Clipper 32106 R3010

Year sampled 1985 1986 1987 1988
IEEE Std.#754 coverage subset subset complete subset
Instruction length 3,4,6 16-64 32 32
Number of formats 5 11 I 3
Number of data types 3 10 5 2
Max. # operands/instr. 2 2 3 3
F.P. Instructions
+,-,X,+, compare • • • •
Square root •
Data transfer • • • •
Data conversion • • •
Integer operations
Transcendentals

In contrast with the comprehensive FPUs, most of these basic processors are newer, provide
only a subset of the IEEE standard, and provide only instructions for basic functions, data
transfer and data conversion.

23

inexact, implying that rounding was performed on the result. It is usually handled by the

hardware.

Table 2.10: Interface characteristics of our basic FPUs.
Interface Weitek Fairchild Western Elec. MIPS

Characteristics 1164/1165 Clipper 32106 R3010
Data bus width 64 32 32 32
of operand regs 2 8 4 16
Register width 64 64 80 64
Clock Frequency 20MHz 33.3MHz 17.8MHz 25MHz
Technology 2.5j..LNMOS 2j..LCMOS 1.751l CMOS 1.6j..LCMOS
Control implementation hardwired hardwired hardwired hardwired
Extended Precision no no yes no
Exception detection hardware hardware hardware hardware
Exception handling software software software software

Clock frequencies are increasing with improving technology, and few provide support for
more than single and double precision. Control is hardwired, and the handling of exceptions is
left up to software trap handlers.

Chapter 2 24

2.2.3. Floating-point Performance Comparison

The performance of eight comprehensive and basic floating-point units in

computing basic arithmetic operations are compared in Table 2.11. The table is in three

parts, representing three different precisions of arithmetic with register operands.

Table 2.11a: Single Precision FloatinR-Point Performance Comparison.
Implementation Add(~) Multiply(~) Divide(~)

Intel8087 8.50 9.70 19.80
Motorola 68881 2.88 4.20 6.12
National 32081 7.40 4.80 8.90
Zilog 8070 1.80 2.80 2.90
Weitek 1164/1165 0.15 0.15 1.25
Fairchild Clipper 0.36 0.72 2.82
Western Elec. 32106 2.80 2.80 16.80
MIPS R3010 0.08 0.16 0.48

Table 2.11 b: Double Precision Floating-Point Performance Comparison.
Implementation Add(~) Multiply(~) Divide(~)

Intel8087 8.50 13.80 19.80
Motorola 68881 2.88 4.20 6.12
National 32081 7.40 6.20 11.90
Zilog 8070 1.80 4.20 4.30
Weitek 1164/1165 0.15 0.25 2.70
Fairchild Clipper 0.42 2.07 5.46
Western Elec. 32106 2.80 2.80 16.80
MIPS R3010 0.08 0.20 0.76

Table 2.11 c: Extended Precision Floatin~ -Point Performance Comparison.
Implementation Add(~) Multiply (J.LS) Divide(~)

Intel8087 8.50 13.80 19.80
Motorola 68881 1.80 3.12 5.04
National 32081 - - -
Zilog 8070 1.80 4.80 4.90
Weitek 1164/1165 - - -
Fairchild Clipper - - -
Western Elec. 32106 2.80 2.80 16.80
MIPS R3010 - - -

The basic processors generally have significantly less latency for the basic arithmetic func­
tions, although they provide less functionality. Versatility and performance are inversely
correlated, with the silicon area devoted to versatility being converted to speeding up basic
functions.

Chapter 2 25

Since the implementation technology varies significantly for these processors, and

so do their cycle times or clock frequencies, Table 2.12 compares floating-point

performance using the number of cycles needed to complete these basic arithmetic

operations.

Table 2.12a: Single Precision Floating-Point Performance Comparison.
Implementation Add (cycles) Multiply (cycles) Divide (cycles)

Intel8087 85 97 198
Motorola 68881 48 70 102
National 32081 74 48 89
Zilog 8070 18 28 29
Weitek 1164/1165 3 3 28
Fairchild Clipper 12 24 94
Western Elec. 32106 50 50 300
MIPS R3010 2 4 12

Table 2.12b: Double Precision Floating·.Point Performance Comparison.
Implementation Add (cycles) Multiply (cycles) Divide (cycles)

Intel8087 85 138 198
Motorola 68881 48 70 102
National 32081 74 62 119
Zilog 8070 18 42 43
Weitek 1164/1165 3 5 57
Fairchild Clipper 14 69 182
Western Elcc. 32106 50 50 300
MIPS R3010 2 5 19

Table 2.12c: Extended Precision Floatin!!,-Point Performance Comparison.
Implementation Add (cycles) Multiply (cycles) Divide (cycles)

Intel8087 85 138 198 I Motorola 68881 30 52 84
National32081 - - -
Zilog 8070 18 48 49
Weitek 1164/1165 - - -
Fairchild Clipper - - -
Western Elec. 32106 50 50 300
MIPS R3010 - - -

With better technology, it is possible for the newer processors to implement more aggressive
algorithms, leading to a significant decrease in the number of cycles to perform the basic func­
tions.

Chapter 2 26

As clock frequencies increase with improving technology, the absolute times per

function will decrease, but for the same algorithm, the number of cycles stays invariant.

The comparison is complicated by the fact that, in practice, scaling technology directly

affects the choice of algorithms implemented. For example, an iterative multiplier was

feasible in 3J..L HMOS, but an array multiplier is practicable in 1.5J..L CMOS (see Chapter

7). The array multiplier should require fewer cycles than the iterative multiplier, and the

cycle time in l.5J..L CMOS is also less than 3J..L HMOS, thus leading to further speed-up

than implied by classical scaling considerations.

Table 2.13 shows the ratio of operation speeds normalized to multiply, for each of

these floating-point units for double precision. Variations in technology, architecture and

algorithms, lead to variations in the speeds of individual operations by as much as a

factor of 40, but it is interesting to see the disparity narrow as we compare relative

operation speeds within each processor.

Table 2.13: Relative sveed of basic overations normalized to Multipfl_
Implementation Add Multiply Divide

Intel8087 1.62 1.00 0.70
Motorola 68881 1.46 1.00 0.69
National 32081 0.84 1.00 0.52
Zilog 8070 2.33 1.00 0.98
Weitek 1164/1165 1.67 1.00 0.09
Fairchild Clipper 4.93 1.00 0.38
Western Elec. 32106 1.00 1.00 0.17
MIPS R3010 2.50 1.00 0.26

The above performance numbers are for double precision operations. From Table 2.6 we find
that, normalized to multiply, the relative frequencies of add/subtract are 1.5 to 2.3, and divide
are 0.25 to 0.5 for several programs. Based on these relative frequencies, it appears that Na­
tional 32081 and Western Electric 32106 addition units and the Weitck 1164!1165 divide unit
are disproportionately slow, while the Zilog 8070 divide unit and the Fairchild Clipper addition
unit are disproportionately fast.

Chapter 2 27

2.3. Summary

Several programs were studied to provide insight into the nature of scientific

computation. Three simple loops, computing Gaussian elimination (GE), dot product

(DP), and polynomial evaluation (PE) seem to be representative of a wide range of

floating-point applications. Common characteristics that emerge from static and dynamic

measurements are:

• operands are mostly array elements, accessed in a regular arithmetic
progression;

• most arithmetic operations are simple, with add/subtract, multiply and divide
instructions occurring most often;
• add/subtract operations occur almost twice as often as multiply, while divide
occurs about a third as often as multiply;
• memory reads occur almost three times as often as memory writes, and the
ratio of floating-point operations to memory references falls in a small range
close to unity;

• there is scope for parallelism in floating-point computation at various levels,
including overlap with integer computations, memory accesses, and
simultaneous evaluation of sub-expressions.

Floating-point units were compared with respect to instruction set, interface and

performance. FPUs fall broadly into two categories based on functionality, and increased

functionality comes at the price of reduction in basic operation speeds. As technology

improves, clock rates increase and more aggressive arithmetic algorithms can be

implemented, leading to greater speed-ups than expected simply by classical scaling.

Several factors need to be considered when considering any of these floating-point

processors in an actual system. Just as important as the algorithms and implementation

are the interface of the floating-point unit to the rest of the system. It is not enough to

merely have a fast floating-point unit; we need to meet the demand for operands from

memory as well. An efficient interface is essential for obtaining any significant system

Chapter 2 28

speed-up, and this will be discussed in the next chapter, together with tradeoffs for fast

algorithms and efficient implementations.

Chapter 2 29

2.4. References

[Brod86] R. W. Brodersen and H. Murviet, An Integrated Circuit Based Speech
Recognition System, IEEE Trans. Accoustics, Speech and Signal Processing,
Vol. ASSP-34, No.6 (December 1986), pp. 1465-1472.

[Dong79] J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK
Users' Guide, SIAM Publications(1979).

[Fand85] J. Fandrianto and B. Y. Woo, VLSI Floating-point Processors, Proc. Seventh
IEEE Int' l. Symposium on Computer Arithmetic(May 1985), pp. 93-100.

[Gavr86] M. Gavrielov and L. Epstein, The NS32081 Floating-Point Unit, IEEE
Micro(April 1986), pp. 6-12.

[Gibs70] J. C. Gibson, The Gibson Mix, IBM Systems Development Division Tech.
Report(June 1970).

[Heni83] A. Heninger, The Zilog Z8070 Floating-Point Processor, Mini-Micro
West(1983).

[Kaha85] W. Kahan, personal communication (April 1985).
[Knut71] D. Knuth, An Empirical Study of Fortran Programs, Software Practice and

Experience, Vol. 1, No.2 (1971), pp. 105-133.
[Leun86] B. Leung and Y. M. Lin, Statistics on Floating-point Arithmetic, CS 252

Class Project(May 1986).
[McMa86] F. H. McMahon, The Livermore Fortran Kernels: A Computer Test of the

Numerical Performance Range, UCRL-53745, Lawrence Livermore
National Laboratory (December 1986).

[Nage73] L. Nagel and D. Pederson, Simulation Program with Integrated Circuit
Emphasis (SPICE), 16th Midwest Symposium on Circuit Theory, Waterloo,
Ontario (April 12, 1973).

[Nave80] R. Nave and J. Palmer, A Numeric Data Processor, Proc. Inti. Solid-State
Circuits Conference(February 1980), pp. 108-109.

[Neff86] L. Neff, Clipper Microprocessor Architecture Overview, Proceedings of
Spring COMPCON(March 4-6 1986), pp. 191-195.

[Rowe88] C. Rowen, The MIPS R3010 Floating-point Coprocessor, IEEE Micro(June
1988), pp. 53-62.

[Shah84] V. Shahan, The MC68881: The IEEE Floating Point Standard Reduced to
One VLSI Chip, Proc. IEEE Computer Conference(March 1984), pp. 172-
176.

[Trou86] W. W. Troutman, Design of a Standard Floating-Point Chip, IEEE J. of
Solid-State Circuits, Vol. SC-21, No.J(June 1986), pp. 396-399.

3 Design Tradeoffs for
VLSI Floating-Point Units

30

From the previous chapter, we found several characteristics of scientific

computation common to a wide range of floating-point programs. In particular, there

were several levels of extractable parallelism, and these will be explored in this chapter

as we discuss coprocessor interface design. In section 3.1, we identify the components of

interface overhead, and the interfaces of two popular floating-point units will be

compared with the coprocessor interface for SPUR. This is a summary of the work of

Hansen [Hans88], a primary designer of the SPUR coprocessor interface, and section 3.1

will conclude by outlining means of reducing the different components of interface

overhead.

Chapter 3 31

The IEEE Floating-point standard, an emerging industry-wide standard, is discussed

m section 3.2. The features of the standard include the specification of formats of

operands and results for several arithmetic operations, including conversions between

numbers of different formats, and exception detection and handling. "Suporting the

standard'' is becoming fashionable, even though the phrase means very different things

to different people. It was never the intent of the standard that it be entirely implemented

in hardware; the idea was that a software/hardware combination could be used, balancing

cost and performance [Cody84]. The implications of implementing the standard in light

of available VLSI technology with a combination of hardware and software conclude

section 3.2

The last section of this chapter shows some design tradeoffs m matching the

appropriate algorithm to the available technology, optimizing area and time. With

today' s technology and its level of integration, we can implement algorithms that we

could not implement even a few years ago; by the same token, as technology moves

towards higher levels of integration, today's choice of algorithms may be quite

inappropriate in a few years. The previous chapter indicated that the basic arithmetic

functions, add/subtract, multiply, and divide need to be made as fast as possible to satisfy

the needs of most scientific computation. Algorithms for all three operations will be

considered, and VLSI implementation implications presented.

Chapter 3 32

3.1. Coprocessor Interface Design

Floating-point operations often take significantly more cycles to complete than

integer operations in a load/store RISC architecture. Technological limits constrain what

can effectively be implemented on a single chip, so many designers feel that the most

effective system for scientific computation with RISC architectures involves a special

purpose coprocessor working in conjunction with a fast, efficient integer unit.

The SPUR FPU is a load/store architecture, similar to the CPU. As a tightly

coupled coprocessor, it adds special instructions to the CPU instruction set. It also adds

registers and data types that are not directly supported by the CPU architecture.

Communication between the CPU and the FPU is implemented in hardware and is

transparent to the programmer, providing a uniform programming model.

The FPU implementation exploits parallelism in two ways. First, the FPU is

synchronous with the CPU and tracks instructions -- it decodes a special instruction bus

in parallel with the CPU [Hans86]. From a control point of view, under normal

circumstances CPU and FPU instructions execute in parallel. This parallelism can be

controlled in two possible ways, by either the CPU or the FPU: (1) explicit: by setting a

bit in the user process status word in the CPU called fpuPara/lel, which will allow

overlap of CPU and FPU operation instructions, and (2) implicit: the assertion of a

control signal called fpuBusy will prevent the CPU from issuing FPU operation

instructions if the FPU is still in the execution phase of a previously issued instruction.

When overlap is prevented, the CPU always stalls until the FPU is no longer busy.

The second way in which parallelism is exploited is from a data point of view -­

operands flow between the FPU and the SPUR data cache memory in parallel with FPU

Chapter 3 33

arithmetic operations. All address computation is directly controlled by the CPU. The

data path between the cache and FPU is 64 bits wide, so double precision operands are

loaded or stored in one cycle. The design allows loads/stores between the FPU and cache

to proceed during other FPU operations because the FPU register file has dual read and

dual write ports.

3.1.1. Communication Overhead in Floating-Point Coprocessors

Despite the obvious parallelism inherent in having two independent execution

elements, coprocessor applications are often still characterized by serial processing. In

many cases, communication between the devices diminishes much of the potential

performance advantage gained by having the special hardware assistance. To illustrate

the magnitude of this communication overhead, we summarize the work of Hansen here

[Hans88]. Communication overhead of two popular floating-point coprocessors -- the

Intel i8087 /i80287 and the Motorola MC68881 -- are examined, and compared to that of

SPUR.

Three functions, representative of common floating-point-intensive applications, are

used in this comparison: Gaussian Elimination (GE), Dot Product (DP), and Polynomial

Evaluation (PE). These were described in Chapter 2.

First, small programs were written in a high level language for each of the

functions. These programs were then translated with the best compilers available on real

machines, always employing the optimization phase if available. To guarantee

equivalent compiler code technology, each assembly language code listing was examined

by hand and enhanced to make maximum use of registers for all architectures. This code

Chapter 3 34

is referred to as the FORTRAN version. The code was then assembled and run to ensure

correctness.

Second, each program was written in assembly language to eliminate redundant

jumps, no-ops, and other unnecessary calculations found in previous versions, and this is

called the ASSEMBLY version. Each program was tuned to take advantage of the

architecture of the machine it was running on, allowing for maximum instruction

prefetch, overlap, and other forms of parallelism whenever possible. Simple code motion

optimizations were performed on both versions of each program, and more complicated

loop unrolling was employed when it was found to benefit performance.

3.1.2. Communication Overhead and Total Loop Execution Time

Floating-point operations usually take several execution cycles. For Hansen's

studies, only cycles spent in actual computation are considered operation cycles for the

FPU instruction, and everything else is considered overhead. This overhead has three

components:

(1) cache access overhead: All cycles associated with the CPU or coprocessor

waiting for data to be retrieved from the memory/cache system are considered

part of the memory access overhead. It is assumed that no instruction misses

occur and the data accessing pattern is a linear walk through memory.

(2) loop overhead: All cycles associated with incrementing loop counters,

doing loop index test/branch, calculating data array addresses, and performing

any necessary necessary no-ops are counted as loop overhead.

Chapter 3 35

(3) floating-point operation overhead: All cycles associated with the

instruction fetch (unless overlapped with operation cycles) and data movement

between the CPU or memory and the coprocessor are considered operation

overhead cycles. Also included are cycles associated with special functions,

such as sending the instruction address to the coprocessor, testingfpuBusy, and

so on.

The amount of overhead associated with the three programs described above and

the relative percentage of total execution time for each version of each program for the

various processor/coprocessor pairs are shown in Figure 3.1. The time spent waiting for

cache miss accesses to be resolved is shown as the topmost piece of the overhead bars in

Figure 3.1. For conventional architectures, this does not amount to more than about 11%

of the total execution time. This is simply because the amount of time spent in operation

and overhead associated with operations is so much larger than the cache delay, the

cache access overhead is a relatively small figure. However, for the SPUR architecture,

it becomes the dominant factor in terms of the amount of non-computation time per loop

iteration. One of the more in.teresting systems issues is the influence of the cache on

performance. In most cases, a SPUR cache miss can result in approximately 20 lost

computation cycles. In small loops that consist of just a few operations and associated

memory references, the cache can easily become a dominant factor in terms of the time

spent in overhead. This is especially true as the cycle time and number of execution

cycles per floating-point operation get smaller, as illustrated by the data for SPUR.

The loop overhead is shown as the middle section of each vertical bar. Hand

optimizations for all processor/coprocessor pairs has reduced this to less than 4% of the

Chapter 3

... -----·-··-------·------------\

Cache Access, Loop, and Operation Overhead

FORTRAN ASSEMBLY

mJ D

-- ~ -------·::: ::::::r].-:,::~:~:::::1~:1:::~:~::~:~:
!; I!! ~ •! f.- : i ' · ·······------ Cache Access I ~~ ~ ; , I ~ a.

;; ·: - --~_;_ - --------1._!. --

!:-::_ ~ ~ i_i._ rn,_ ... g !! :: m r- - ---- Operation Overhead
~~ .. ~~~~--~~~~.w~--.. ~~--~._-

20%

· ---- Loop Overhead

GE DP PE GE DP PE GE DP PE

MOTOROLA SPUR

t __________________________ .. _____ ~--------·------·----·-----------------·-------·-----·----------·--------------------------------------·-----..:

Figure 3.1. Overhead as a percentage of total loop execution time for 3
processor/coprocessor pairs for 3 small programs. Each processor/coprocessor pair exhibits 3
types of overhead: cache access time (the top segment in each vertical bar), loop time (the
middle segment), and overhead associated with the operation (bottom segment). Total over­
head ranges from 35% to 65% of total computation time for the FORTRAN version, and 30%
to 55% for the ASSEMBLY version.

36

total execution time. Normal compiler output would produce about 20% loop overhead

in most cases. SPUR assembly language versions of all programs are able to reduce loop

overhead to zero because of overlap of CPU and FPU operations.

As illustrated by the composite bars at the bottom, total overhead for these

optimized programs can still account for 35% to 65% of the execution time! For loops

generated by present-day compilers, that figure is 1.5 to 2 times higher. For conventional

coprocessors, the amount of time spent in operand overhead is about 65% of all the

-overhead, and between 20% and 50% of the total execution time. This is represented by

Chapter 3 37

the bottom segment of each vertical bar. The main contribution comes from memory

traffic penalties (excluding cache miss overhead). The SPUR architecture allows parallel

loads and stores during floating-point computation that reduces this overhead figure to

less than 10% in all cases. Some sequences actually result in no floating-point operation

overhead.

A considerable speedup can be obtained by allowing cache access to be overlapped

with computation cycles. For example, a technique allowing prefetching of cache

elements during long computation times appears to be a way of saving up to 30% of the

cost associated with a typical loop cache miss. Although easy to do in assembly

languages, we must have better optimizing compilers if we expect high level languages

to take advantage of this. Clearly, reducing the miss ratio will be more significant to a

faster SPUR architecture than the other architectures compared in this experiment. There

are several ways to accomplish this and must be considered at a system level, since other

types of computation must be performed besides floating-point calculations.

As coprocessor speeds improve, without commensurate improvement of the

interface, the percentage of total execution time spent in overhead increases. If we

consider each of the example architectures to remain the same, except that the time for

computation is assumed to be that of the SPUR FPU, overhead can increase to as much

as 95% for the Intel system and 85% for the Motorola system. Thus, if floating-point

operations took no time, the average performance improvement would amount to less

than 25% for Motorola and only 10% for Intel! Slow operation times have served to

mask the inefficiencies of the interface.

Chapter 3 38

Figure 3.2 shows the amount of time spent m overhead for each of the

processor/coprocessor pairs if their respective floating-point coprocessors ran at the

speed of the SPUR FPU. This increase in overhead leads us to believe that new

coprocessor interface architectures will be necessary for future generations of VLSI

computers.

r··----------------~~~:~--~--~~~:;~:~-~~~~~::·=~~-~~~-~~-------------1
: FOR'IRAN ASSEMBLY j

100*.

Ill

~

II
H
::
:: :: .:
::
::

!!
::
::

~
::
!!

II

1!!1
Ia

GE DP PE

INTEL+ SPUR FPU

D

::

!: :: Cache A""""

Loop Overhead

::

li

i
GE DP PE

MOTOROLA + SPUR FPU

' ' .. ---------------------------------------·---·------------------ .. ---- ----------------- ---------------.!

Figure 3.2. The Intel and Motorola Interface Overhead with Faster FPU. The overhead
values are calculated by assuming that all overhead-related cycles are the same as before for
each processor/coprocessor pair, but the speed of the floating-point coprocessor is assumed to
be equivalent to the SPUR FPU.

Chapter 3 39

3.1.3. Parallel Execution Between CPU and FPU

Most commercial coprocessor architectures claim to allow the processor to proceed

while the coprocessor continues to execute in parallel. However, operational

specifications suggest that in many cases, the floating-point instructions have built-in

serialization with respect to the main CPU operation. For example, the Intel compilers

follow most floating-point instructions with an explicit WAIT instruction, stopping the

CPU from further execution (including integer instructions) until the coprocessor BUSY

signal is not asserted [Kane85]. Likewise, the Motorola coprocessor prevents parallel

execution in most cases by explicitly encoding a CPU busy wait request in the floating­

point instruction [Sarr85]. The SPUR architecture allows full parallelism between the

CPU and the FPU. The CPU may issue any number of non-floating-point instructions

following an FPU initiation. The interface is fully synchronous and provides fast

interaction between the CPU and the FPU. ThejpuBusy signal is continuously monitored

by the CPU and indicates at the earliest possible moment when the FPU is ready to

receive another instruction.

Parallel execution involves a complex set of interactions between the components of

the system and the software running on the system. To illustrate the advantage of this

parallelism on a single SPUR node, Figure 3.3 shows the relative performance of SPUR

to itself.

Two ways to minimize operand overhead are by going to a wide data bus and

allowing memory operations to proceed in parallel with arithmetic operations. Figure 3.4

shows the effect of varying bus width on operand overhead, for compiled and hand­

optimized versions of DP, with and without I/0 parallelism.

Chapter3

~··· .. ----- ... ----· --

PARALLEL

[I]
FORTRAN ASSEMBLY

1.00

0.80

EXEC 0.60

0.20

0.00 _..~;.;;.L..J;.;.;.IIIL, o;;IIII;.O;.;I._-..J;.;.;,;a;.;;.L,.,.~;;M~il&,;o;;;.,iiii"'""-

GE DP PE GE DP PE
. ·--·-~--------··---··-····-·-----·---

Figure 3.3. Performance Improvement for Parallel Operation of the SPUR!FPU system. The
execution time for each version of the three programs is compared. The dark vertical bar
represents the relative amount of execution time for concurrent execution of instructions on
SPUR and the FPU coprocessor as compared to strictly sequential execution (i.e., no overlap).
For example, for polynomial evaluation using the ASSEMBLY version, parallel SPUR/FPU
operation reduces the execution time by 30%.

40

An architecture that decouples memory operations from arithmetic operations,

seems attractive for a number of reasons. From the previous chapter, we have seen that

the ratio of floating-point operations to memory accesses is close to unity. Since several

arithmetic operations require many cycles to complete, i.e. since the average number of

cycles for an arithmetic operation is significantly larger than that required for memory

accesses (on a cache hit), decoupling memory operations from arithmetic operations

helps in keeping the floating-point compute-bound a greater percentage of the time. The

implementation cost for this parallelism is in two places: in the control section, it

involves maintaining a pipeline for memory operations; in the datapath, it involves the

Chapter 3

0
p
B
R
A
N
0

0
v
B
R
H
B
A
0

16

Operand Overhead versus Bus Width

ASSEMBLY

32 64 16 32

BUS WIDTH

.

Figure 3.4. Operand overhead versus bus width. The operand overhead, normalized for a 16-
bit bus, is reduced more than 50% when the data bus width is increased from 16 bits to 64 bits
for the compiled version. When memory and arithmetic operations proceed in parallel for
hand-optimized code, the corresponding decrease in operand overhead going to a wider bus is
as much as 90%.

41

design of a multi-port memory which can be accessed both for memory load/store and

register read/write operations simultaneously. The load-store pipeline adds an extra 14%

to central control, while the 4-port register file is 90% larger than its dual-ported register

file. Even though an individual register cell gets a lot larger, a floating-point unit does

not need very many registers -- about eight and sixteen registers are considered sufficient

for arithmetic with real and complex numbers, respectively-- so the extra area penalty on

the fraction datapath is only 6%.

Chapter 3 42

3.2. Implementing the IEEE Floating-Point Standard

From the previous chapter, we see that most comprehensive floating-point units

support the complete standard in hardware, while most of the basic floating-point units

implement only a subset of the standard in hardware, and provide a software shell around

it. Implementing the entire standard in hardware may lead to more complexity and

reduced performance. In SPUR, we design a basic floating-point unit that implements a

subset of the standard while retaining high speed. The different external and internal

data formats are presented here, after which memory and arithmetic operations are

discussed. Several features of the IEEE standard are still implemented in hardware, like

conversions between different precisions, rounding, compare and branch, and exception

detection for special operands and results, while exception handling as well as special

functions like square root, are left to software.

3.2.1. Data Formats

The IEEE standard requires support for two data formats: single and double. The

range and precision provided by the single-precision format is adequate for most real

world data values. Hence input and output of data for floating-point programs is usually

in single precision. Since intermediate results could still require greater range and higher

precision than that offered by single precision, application programs usually use double

precision to maintain accuracy at the single-precision level.

Most user programs doing scientific computation will periodically call on a run-time

mathematics library for special functions like transcendentals. These routines will in tum

have their inputs and outputs specified in double precision. To preserve accuracy of

Chapter 3 43

these routines, their intermediate results require even greater range and precision -- hence

the need for the extended precision format. This last format is not absolutely necessary,

but its availability simplifies the programmer's job and produces code that is cleaner and

that runs faster.

The standard recommends a 15-bit exponent and a 64-bit fraction for the extended

format. To provide correct, unbiased rounding three extra bits -- Guard, Round and

Sticky -- are needed with the fraction. There are six allowable data types available in

three precisions: zero, normalized and denormalized numbers, infinity, and quiet and

signalling NaNs. Denormalized numbers are numbers smaller than the smallest

representable number in any format. Even with the smallest exponent, denorms cannot

have a leading 1 in its significand, unlike normalized numbers. A NaN (Not-a-Number)

is a symbolic entity that can be created by invalid arithmetic operations, such as a divide

by 0. A NaN comes in one of two flavors, quiet and signaling; the latter signals an

invalid operation exception whenever it appears as an operand, while the former

propagates through almost every arithmetic operation without signaling exceptions.

To provide hardware assist for handling denormalized numbers and other special

operands, three more bits are used, called the type tags. Again, conversions between the

different formats requires two extra bits, the round tags, to guarantee that rounding is not

performed twice. Compared to double precision, which has an 11-bit exponent and a

52-bit fraction, the extended-precision datapath needs to have a 17-bit exponent and a

72-bit fraction, increasing the datapath area requirement by 36%. Type tags remove the

notion of NaNs from the datapath, and allow them to be handled entirely in software.

Since results are deterministic with NaNs as operands, results are easy to produce in

Chapter 3 44

software and the amount of hardware support required is minimal. Also, only the

memory interface needs to know when a NaN is involved, and once again, only the type

tags and not the entire 87 -bit encoding is required.

3.2.2. Memory and Arithmetic Operations

Several floating-point units, including SPUR, implicitly convert numbers

represented in other formats to a common internal format. This implies that results of

arithmetic operations are always rounded to a predetermined precision, and overflow and

underflow thresholds are set by this one format. Rounding a result to several different

precisions requires duplication of the hardware components needed for rounding and

normalization. This was not done in SPUR, with area used instead to speed up the basic

arithmetic functions.

Even though the datapath is faster and more uniform going to a common internal

format, the responsibility of supporting single-precision and double-precision arithmetic

is now shifted to Load, Store, and Convert instructions. The implicit conversion from

any format to the internal format occurs during a Load instruction. Other alternatives for

converting to the internal format are an explicit Convert instruction, or combining an

implicit conversion with the arithmetic operation itself. The former increases the

instruction count, while the latter increases the latency of the arithmetic operations. Load

instructions are ordinarily simple, involving direct writes to the register file, and can be

accomplished in about half a clock cycle once the data is available. Even with the

increased complexity of a Load with implicit conversion, it is possible to write to the

register file in one cycle, and does not increase the cycle count for Load.

Chapter 3 45

The hardware performs the correct conversion for all data types except infinity and

NaNs, setting three bits (called Type tags, mentioned above) which identify the six

different data types. Zero, infinity and NaNs represent single, deterministic values, and

the hardware sets the appropriate tag bits after identifying the different data types. Since

zero occurs much more often than infinity or NaNs, the conversion hardware is kept

simple and fast by ensuring only the correct conversion of zero. If an arithmetic

operation involves the incorrectly represented data types NaN and infinity, an operand

trap is taken, and a software exception handler inserts the correct conversions for infinity

or NaNs. Once again, hardware is devoted to speed up the frequently occurring cases,

and the infrequent cases are left for software; the few tag bits greatly simplify the

software trap handler, though, eliminating the need to inspect the entire 87 bits of data.

To be able to take advantage of parallelism between memory operations and

arithmetic operations, it is essential that Load and Store instructions be unable to cause

exceptions. Hence, an explicit Convert instruction is necessary if a result is required in

single or double precision. Since results for all arithmetic operations other than Converts

are in the internal format, single and double precision results can only be generated in

two steps, via a Convert. It is necessary to provide some mechanism to take the

intermediate rounding into account when producing the final result, to avoid double

rounding. Two bits, called round tags, provide information on whether the intermediate

result was exact, and if not, whether the intermediate rounding required an increment; the

actual final rounding (short round) is then implemented in software [Lee89]. With the

availability of faster operations in extended precision, it is hoped that users will use the

widest precision most often, making the short round infrequent.

Chapter 3 46

Table 3.1 shows the actions taken by the hardware for different arithmetic

operations involving the different data types. All results are checked by the hardware to

see if they were inexact (needed rounding), or if there was overflow or underflow.

Table 3.1: Action for FPU operations with different data types.
Operation Zero Denonn Nonnal Infinity NaN

Add,Sub Hw Hw Hw Trap Trap
Multiply Hw Trap Hw Trap Trap
Divide Hw{frap Trap Hw Trap Trap
Convert Hw Hw Hw Trap Trap
Move,Abs,Neg Hw Hw Hw Hw Hw

Hw implies that hardware handles the operation entirely. Trap implies that intervention by the
software trap handler is required. Nonnal divide operations are handled by hardware, but a
divide by zero creates an operand trap, and is handled by software.

3.2.3. Exception Detection and Handling

Exceptions can occur with operands and with results, and so they need to be

detected before and after instruction execution. The detection of operand exceptions is

greatly simplified because of the presence of the data type tags. The inspeCtion of just

three bits, instead of 87 bits, is all that is needed to detect illegal operand types. Two

special IEEE standard exceptions, invalid and divide-by-zero, are detected and signalled

by software, following the detection of an operand trap by hardware.

Result exceptions include inexact, overflow, and underflow. The rounding logic

signals an inexact exception if rounding is required, and this requires minimal extra

hardware. Overflow and underflow are determined by comparing the result exponent to

maximum and minimum allowable values, respectively. This comparison can be reduced

to a set of detections of all-0 and all-1 conditions in specific blocks of bits of the

exponent, and as shown in the following chapter, need take up 15% of the exponent unit

..

Chapter 3 47

or only 1.6% of the entire datapath.

When denorms are detected for multiply or divide, the software trap handler adds

the denorm to zero, producing a normalized sub-normal value (remember that there are

extra bits in the exponent to allow just that), and then restarts execution. For infinity and

NaNs, the results are determined from a table, and so the trap handler has to set the

proper tag bits and set the exponent and fraction bits of the result operand appropriately.

When an overflow or underflow is detected in the result, exception flags are set

appropriately, and the software sets the exponent and fraction to the maximum or

minimum allowable values, respectively. When a result is inexact, the hardware

completes the rounding and writes the rounded result into the destination register, setting

the inexact exception flag.

Performing most of the exception detection and minimal handling of exceptions

requires very little extra hardware. Minimal exception detection and most exception

handling in software leads to fairly simple software trap handler code, that is small, clean

and fast. Some comprehensive floating-point units have implemented the exception

handling in hardware using microcode; it may be interesting to investigate the silicon

area spent for this microcode and its impact on performance. Data collected at Berkeley

[Leun86] for the Lattice Filter indicates that operand frequency for denorms, infinity and

NaNs combined, is 0.06% of the total. Not many programs exist that use these special

operands, and so we have limited data on their usage at present. The data for SPICE

shows that zero occurs between 10% and 30% of the time, depending on the type of

analysis performed. This data indicates that direct hardware support for normal numbers

and zero is desirable, but the infrequent occurrence of the other data types may justify

Chapter 3 48

their handling in relatively simple hardware-assisted software.

3.3. Arithmetic Algorithms and Implementation Technology

Together with an efficient interface, fast algorithms for performing the critical

arithmetic functions are essential for fast floating-point support. A balanced

implementation should take into account the relative frequency of different floating-point

operations and implementation constraints, in tum affecting the choice of algorithms, the

micro-architecture, the clocking methodology, and the design style.

Algorithms can have quite different area and time costs depending on their

implementation technology, whether it is Schottky TIL, ECL MSI, ECL gate arrays, or

MOS VLSI. Estimates of area and delay depending on gate count ignore such realities as

fan-in, fan-out, interconnect, and chip crossings. In VLSI, datapath pitch is usually

determined by interconnect requirements, such as the number of data busses that need to

traverse it. The size of a variety of circuits is the same in one direction, while varying in

the other. Naturally, some circuits will be much more densely packed than others, and so

merely counting the number of gates in a circuit block can give a misleading idea of the

area it requires. Figure 3.5 compares areas and delays of some basic circuit blocks in

ECL LSI and CMOS VLSI [Prio84], [Bose87].

To illustrate this technology dependence, consider usmg Booth receding in an

iterative multiplier in the two technologies. To reduce one multiplier byte into its partial

'sum' and 'carry' vectors, eight rows of adders are required without receding; and with

receding, four 4:1 multiplexors and four adders are necessary. Since some CSA rows can

evaluate in parallel, there are 5 and 3 effective adder delays in the two cases,

Chapter 3

--··------------------·-------------------...

! 0 A:w:Ef~~~~==~ I
~ Time, ECL LSI I Time, CMOS VLSI

A --------------------------- -------------------- --------------------

A A
7 ----- --

6 --- ,, ----- - --­

s --- :' ----- - ---

A A
4 ------------------- ----------------------------- --- ·' ----- - ---

T T T
3 ------------------- - ---------------------

2 ------------------- _ T A ,,,, ••••

0

gJx ~Jx ~ lJI~r ~Jffi . . --

Figure 35. Area-Time Relationships in ECL LSI and CMOS VLSI. Area (A) and Time (T) of
circuit blocks are normalized to a 2:1 multiplexor in each technology. In ECL, for example, a
full adder is the same size as a 4:1 multiplexor, whereas in CMOS, a full adder is four times
the size of a 4:1 multiplexor.

respective! y.

49

From Figure 3.6, we see that in ECL LSI the areas of both schemes are the same

and the scheme with Booth recoding is just 7% faster. In CMOS, Booth recoding

requires 37% less area than without recoding and is 33% faster. Clearly, Booth recoding

is preferable in CMOS, and makes little difference in ECL LSI.

Chapter 3

, .. __ ' . . . ' . . . '
Booth vs. No Booth in ECL LSI and CMOS VLSI

Area Tune Area Time

Area

D No Booth

~ Booth

Time

[] NoBooth

I sooth

ECLLSI CMOSVLSI

Figure 3.6. Area-Time impact of Booth recoding in two technologies. Booth recoding provides
significant area and time savings in CMOS VLSI, but only marginally affects the design in
ECL LSI. These estimates are based on the ratios in Figure 3.5.

3.3.1. Add/Subtract Design Issues

50

Add and subtract instructions may be speeded up by providing separate datapaths

for exponents and significands, since these undergo some transformations independent of

each other. The added allotment of chip area allows exponent and significand

computations to proceed in parallel, except for initial exponent difference calculation and

final exponent adjustment due to rounding or normalization. For the initial exponent

difference evaluation needed to determine fraction alignment, two subtractors working

simultaneously followed by selection logic, may be used to speed this up.

After the evaluation of the initial exponent difference, the first operation on the

significands is alignment of their binary points. This involves a right shift equal to the

exponent difference, which may be as much as (n+3) bits long, to accommodate ann-bit

significand and generate three extra bits for rounding, as required by the IEEE Standard.

Chapter 3 51

The FPU designer has a choice of building the shifter in a single stage or in multiple

stages. The area needed for the shifter decreases as the number of shift stages increases,

but with a penalty in speed. An advantage in having a single-stage shifter is that the

logic to generate the 'sticky' bit (needed for directed rounding) folds neatly into the

lower triangle left unused by the physical layout of the shifter in VLSI.

The next step is addition, and it has received considerable attention over the years

[Ladn80], [Bren82], [Wei85], [Han87]. Complexity issues in fast carry computation

have been explored, and have led to interesting implementation options. Parallel-prefix

methods of carry computation seem to provide better area-time tradeoffs, especially for

large data widths. Table 3.2 shows the area versus time tradeoffs for several carry

computation schemes, for a 64-bit adder in CMOS VLSI.

Table 3.2: Area-Time Comparison of Carry Schemes for 64-bit adder.
Carry Scheme Area Time A*T

Manchester 1.00 1.00 1.00
Bypass 1.33 0.51 0.64
Look-Ahead 2.92 0.25 0.73
Brent-Kung 2.70 0.26 0.70
Optimized Brent-Kung 2.70 0.21 0.56

Area and Time (delay) are normalized to the Manchester carry scheme, which tends to be the
smallest and also the slowest. Carry bypass involves a conditional bypass of the carry depend­
ing on propagate and generate signals at each bit position. Carry look-ahead uses 8-bit blocks
to generate 64 bits. The difference between the regular Brent-Kung scheme and the optimized
Brent-Kung scheme (last row) is that the latter uses variable-sized buffers to balance fan-out
with drive capability, without increasing the area.

The intermediate result of the addition or subtraction may have to be incremented

for two independent reasons: (1) if the result is negative or (2) if directed rounding

requires an increment. It is preferable to combine these into one increment function,

with appropriate hardware embedded in the rounding logic and the logic for calculation

of normalization distance.

Chapter 3 52

The final step, normalization, requires detection of the leading 1 in the intermediate

result, and a normalizing left shift to bring the leading 1 into the most significant bit.

Fast and efficient dynamic circuits can be used to detect the leading 1, and a bi­

directional shifter can be used to combine the functions of alignment right shift and

normalizing left shift. Given that an initial long alignment shift implies that rounding

will be done and will preclude a final long normalizing left shift, independent paths for

rounding and normalizing can be provided in the fraction datapath to take advantage of

this fact, thus reducing total latency and yet nominally increasing area.

3.3.2. Multiply Design Issues

Since it is not feasible to build a 64 x 64 array multiplier as part of a single-chip

FPU with currently available technology, several iterative schemes need to be

considered. A 64 x 32 array requires 2 iterations to compute the full product, but takes

up about twice as much area as a 32 x 32 array, which requires 4 iterations. Even the

area of a 32 x 32 array just for the multiplier exceeds the current FPU area budget for

both multiply and divide.

Table 3.3 shows area versus time tradeoffs for different algorithms for

implementing a 64 x 64 multiply. Area and time are normalized to that chosen for

SPUR, which is an 8-bit recursive scheme.

A real implementation is constrained to work in a small range of Area-Time, as

shown in Figure 3.7. Available area defines the allowable region along the X-axis, while

performance criteria determine the acceptable range in the Y -axis. The acceptable region

is constantly changing with available technology, and design choices falling out of the

Chapter 3

Table 3.3: Area-Time Tradeoffs for 64 x 64 Multiply.
Multiply Algorithm Area Time A*T

Serial (n=2) 0.1 8.0 0.8
Parallel (n=32) 1.9 0.7 1.3
Parallel (n=64) 4.0 0.5 2.0
Recursive (n=8) 1.0 1.0 1.0
Recursive (n=l6) 1.5 1.0 1.5

The area for the parallel scheme and the time for the serial scheme are too large, reducing the
choice to recursive schemes. The higher-radix recursive scheme takes up more area, but does
not run faster, contrary to expectation, because the delay time through the inner loop increases
beyond a phase time, and it is no longer to run it at twice the external clock rate.

53

acceptable design space for one technology may very well become feasible in another

technology.

Time

0

0
Recursive (n=8)

2 3 4

Area

Figure 3.7. The Area-Time Design Space for Multiply. For current levels of integration, for ex­
ample in 2 micron CMOS, a high-radix parallel scheme is too large for implementation, and so
falls out of the acceptable design space, which is left unshaded.

The SPUR FPU multiplier is implemented in nme iterative steps, with each

iteration implementing a 64 bit by 8 bit multiplication. In each iteration, four overlapped

Chapter 3 54

triplets of multiplier bits (nine bits) are decoded by a modified Booth recoder. Four

multiplicand (MCD) multiples of magnitude +2M CD, + lMCD, -lMCD and -2MCD are

needed per iteration, along with 0. As mentioned earlier, the relative cost of a

multiplexor compared to that of an adder makes Booth recoding feasible in this CMOS

datapath. Also, separating the recoding from the carry-save-addition allows us to

evaluate them in separate time-slots in our pipelined implementation.

The four overlapped triplets of multiplier pairs generate the four multiples of the

multiplicand. They are added to the partial 'sum' and 'carry' terms of the previous

iteration, using an array of four carry-save-adders. Note that the four multiples of the

multiplicand are shifted left two bits with respect to each other, depending on the

significance of each multiplier triplet. The partial 'sum' and 'carry' are shifted right

eight bits and seven bits respectively, when looping them back to be the new inputs of

the CSA for the next iteration. Since there are negative as well as positive operands in

two's complement form, the multiplexers and CSA must be fully sign-extended to the

left (MSB) side. Further details are described in [Bose87].

A carry-look-ahead adder is necessary at the start of the multiply operation, to

produce the complement of the multiplicand. It is also necessary at the end to form the

final result by adding the partial product vectors. Since the fraction unit has such an

adder already, we share this module instead of duplicating it in the multiply/divide unit.

This increases the setup and completion times by 12%, but reduces the area of the

multiply/divide unit by 14%.

Chapter 3 55

3.3.3. Divide Design Issues

Restoring divide is the least area-expensive approach for radix-two division, but the

area increases exponentially with the number of bits generated per iteration. The same is

true of parallel-serial schemes. Multiplicative inverse schemes produce incorrectly

rounded quotients and inexact remainders, and later fix-ups can be area-expensive and

time-consuming. SRT division [Robe65], [Atki67] focuses attention on quotient digit

selection, and the remainder iteration does not require back-tracking. Higher radix SRT

division schemes are likely to provide significant gains in area and speed, as better ways

are found to provide compact quotient-selection logic, and concurrency between different

portions of the algorithm (like partial remainder formation and quotient selection) is

exploited.

Table 3.4 lists some characteristics of alternative schemes for division. In high-

radix SRT division, quotient selection becomes increasingly complex and time-

consuming, and becomes the dominant delay component in the pipelined internal loop,

slowing down the clock cycle time and hence the throughput. Quotient selection logic

complexity will probably limit the usefulness of the scheme for radices higher than 16.

Table 3.4: Characteristics of five Division schemes.
Division Exponential Incorrectly Inexact Multiplier Quotient
Scheme growth in cost rounded quotient remainder re_quired selection bottleneck

Restoring •
Parallel-serial •
Multiplicative Inverse • • • Prescaling • • SRT •

Multiplicative inverse produces incorrectly rounded quotients and inexact remainders, and
makes conformance with the IEEE standard difficult Radix 16 SRT should become feasible
with slightly denser technology.

Chapter 3 56

Figure 3.8 shows the area-time design space for divide. Prescaling schemes, which

currently require too much area, should become feasible as SRT schemes reach the

quotient selection bottleneck.

4

3

Time

2

1

0 2 3 4

Area

Figure 3.8. Area-Time Design Space for Divide. The unshaded area is the acceptable region of
the area-time design space, where the boundaries are changing with technology. In 2 micron
CMOS, radix-256 prescale dividers consume too much area and fall outside the feasible design
space, for example.

The algorithm used in the SPUR FPU is based on radix-four, non-restoring division,

using estimates of the divisor and partial remainder. The radix-four quotient digits are

expressed using redundant representations of -2, -1, 0 + 1 and +2, and the partial

remainder is non-redundant. This redundancy in the quotient digits permits less

precision in comparing the divisor and partial remainder to select a quotient digit. The

precision required in inspecting the partial remainder and the divisor can be determined

Chapter 3 57

usmg P-D (Partial remainder-Divisor) plots. It can be shown that six bits of partial

remainder and four bits of divisor are needed to determine the next quotient digit [Frei61]

[Atki68].

The hardware loop for generating the next remainder and the next quotient estimate

contains an eight-bit carry-look-ahead-adder, which generates six most significant bits of

partial remainder. Together with these six bits, four most significant bits of the divisor

are sent to the quotient selection logic, which in tum generates three bits, representing

one of the five possible values of the quotient digit. Depending on the sign of the

quotient digit, it is channeled into one of two registers, one holding positive and the other

holding negative quotient estimates. These registe~s are shifted left two bits per iteration.

The quotient selection logic also controls a multiplexor, which decides the multiple of

the divisor to use for the next iteration.

3.4. Summary

In this chapter we have studied design alternatives for the three key aspects of

floating-point unit design: the interface, the quality of the arithmetic, and the algorithms

for the basic arithmetic functions.

The main contributors to a high performance interface are:
• a decoupled control and execution architecture, which allow data transfers to
proceed while FPU functions are performed;
• on-chip FPU register file and a wide data path between the memory and FPU,
which minimize data transfer overhead;

• an intelligent interface control unit allows FPU instruction decoding and
execution in parallel with CPU instruction decoding and execution, allowing
maximum concurrency; and

Chapter 3

• implicit and explicit synchronization mechanisms, providing the programmer
complete control and flexibility.

58

The IEEE Floating-point Standard 754 is emerging as the industry standard for

assuring quality and consistency of floating-point arithmetic, with such features as

correct and unbiased rounding, gradual underflow, and exception detection and handling.

The implications of hardware support for the IEEE standard were analyzed in this

chapter, and the basis for partitioning tasks between hardware and software were

explored. It is found that it is possible to delegate the evaluation of special functions and

exception handling to software, and implement the rest in hardware, while still retaining

high performance. Lee [Lee86] completed the FPU functional simulator and verified it

against the IEEE Test Suite.

In the final section of this chapter, the hardware costs for implementing the basic

arithmetic functions are studied. Area and time costs for different schemes are

compared, and the suitability of different algorithms determined. For a floating-point

unit implemented on a single chip in 2j.l. CMOS technology, it is found that high-radix

iterative techniques work well for multiply, and significant hardware sharing occurs if

implemented together with iterative SRT divide.

The next three chapters discuss the details of the microarchitecture, logic, circuit,

and layout design issues in the implementation of datapath and control functions.

Chapter 3 59

3.5. References

[Atki67] D. E. Atkins, The Theory and Implementation of SRT Division, Report No.
230, Dept. of Computer Science, Unviersity of Illinois (June, 1967).

[Atki68] D. E. Atkins, Higher-Radix Division Using Estimates of the Divisor and
Partial Remainders, IEEE Trans. Computers, Vol. C-17, No. 10(0ctober
1968), pp. 925-934.

[Bose87] B. K. Bose, L. Pei, C. Lee and D. A. Patterson, Fast Multiply and Divide for
a VLSI Floating-Point Unit, Proc. Eighth Int' l. Symposium on Computer
Arithmetic(May 1987), pp. 87-94.

[Bren82] R. P. Brent and H. T. Kung, A Regular Layout for Parallel Adders, IEEE
Trans. on Computers, Vol. C-31, No. J(March 1982), pp. 260-264.

[Cody84] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hansen, D. Hough, W. Kahan, R.
Karpinski, J. Palmer, F. N. Ris and D.Stevenson, A Proposed Radix- and
Word-length-independent Standard for Floating-point Arithmetic, IEEE
Micro, Vol. 4, No.4 (August 1984).

[Frei61] C. V. Freiman, Statistical Analysis of Certain Binary Division Algorithms,
ProcJRE, Vol. 49(January 1961), pp. 91-103.

[Han87] T. Han and D. A. Carlson, Fast Area-Efficient VLSI Adders, Proc. Eighth
IEEE Int' /.Symposium on Computer Arithmetic(May 1987), pp. 87-94.

[Hans86] P. M. Hansen and S. I. Kong, SPUR Coprocessor Interface Description,
Computer Science Division (EECS) Report No. UCB/CSD 87/308,
University of California, Berkeley (October 1986).

[Hans88] P. M. Hansen, Coprocessor Architectures for VLSI, PhD.
Dissertation(November, 1988).

[Kane85] R. Kane, personal communication, Intel Applications Engineering, (April
1985).

[Ladn80] R. E. Ladner and M. J. Fischer, Parallel Prefix Computation, JACM, vol. 27,
No. 4(0ctober 1980), pp. 831-838.

[Lee86] C. Lee, Unpublished Document: Micro-architecture of the SPUR Floating­
point Unit, Unpublished Report, University of California, Berkeley,
Computer Science Division, Berkeley, CA (March 17, 1986).

[Lee89] C. Lee, Multi-Step Variable Rounding for the IEEE Floating-Point Standard,
accepted/or publication in IEEE Transactions on Computers(l989).

[Leun86] B. Leung and Y. M. Lin, Statistics on Floating-point Arithmetic, CS 252
Class Project(May 1986).

[Prio84] J. Prioste and A. Bass, Motorola MCA2500ECL Macrocell Array Design
Manual (1984).

[Robe65] J. E. Robertson, Methods of Selection of Quotient Digits during Digital
Division, File No. 663, University of Illinois, Urbana (June 1965).

[Sarr85] C. Sarreno, personal communication, Applications Engineering, Motorola
Advanced Microprocessor Division, (April 1985).

Chapter 3 60

[Wei85] B. W. Y. Wei, C. Thompson andY. Chen, Time-Optimal Design of a CMOS

Adder, Technical Report No. UCB/CSD 86/252, U.C. Berkeley (August,
1985).

4 Add/Subtract Datapath
Design Considerations

61

This chapter and the next present datapath design considerations for performing

data manipulations on memory and arithmetic operations. While this chapter

concentrates on the components needed for addition and subtraction, Chapter 5 focuses

on multiplication and division. Design examples will be drawn from the SPUR FPU,

which implements extended precision arithmetic using hard-wired control. An overview

of a floating-point unit datapath will be followed by design details of the different

components and their key building blocks. Area-time tradeoffs that went into the micro­

architecture, logic, circuit, and layout design decisions will also be discussed. Of special

interest are the unique design implications of the very wide data widths in floating-point

Chapter 4 62

unit datapaths.

4.1. Implementation Considerations

Using process yield curves, an estimate for the size of a floating-point unit in 2

micron CMOS is lOmm x lOmm. Accounting for pads and other peripheral circuits, this

leaves about 9mm on a side for circuits. Allowing 25% area for control and routing, this

leaves 60 square mm for the exponent and fraction datapaths. As discussed in Chapter 2,

operation frequencies can serve as a guideline for choosing the most appropriate

algorithm and for budgeting hardware.

The maximum width of the fraction datapath is 75 bits (for example, the partial

product vectors for multiply). Delay in control signals that run the entire length of the

datapath has a large impact in the delay in and between modules in the datapath. If there

is any appreciable resistance in these control lines, the RC delay can become a significant

fraction of module delay, leading to slower computation rates and large clock non­

overlap times to protect against clock skew. We chose a process with two layers of metal,

using one for control and the orthogonal data signals in the other metal layer, thus

virtually eliminating any resistive delay. To minimize clock skew, we scale the drivers of

the control lines to match the capacitances they have to drive, so that control delay is

held between very tight tolerances for the entire width of the datapath.

To allow for a mix of static and dynamic design styles, we chose a four-phase

clocking scheme, also used in the other chips in the SPUR system. A four-phase clock

allows two register file accesses per cycle -- one phase going for read and one for write.

The two intermediate phases between read and write are used for precharging the

Chapter 4 63

dynamic busses. The cycle time is limited by the CPU register file read and write time.

The current technology allows transistors with minimum channel length of 2 microns,

with a minimum size inverter discharging 1 pf capacitor in one phase. The present

clocking scheme is shown in Figure 4.1.

PIDl

_j 20 ns

PID4

~~5~ns+l------+-----~------~~
PID2 PID3

r··------------------------------------ 100 ns ---~

Figure 4.1: SPUR Clocking Scheme. The cycle time, limited by the CPU register file access
time, is 100 ns and has four equal non-overlapping phases. Each phase is asserted for 20
nanoseconds, separated from the next by 5 nanoseconds.

Figure 4.2 shows the FPU floor-plan with the different datapath modules identified.

Other than control, the datapath can logically be considered to have six distinct

components. These components are called the exponent and fraction front-ends,

exponent, sign/tag, add/subtract, and multiply/divide, where the last two manipulate the

fraction part of the datapath for different instructions.

Table 4.1 lists the different SPUR FPU instructions and the major datapath

components that they utilize. It is evident that load and store memory operations only

affect the front-ends, making it possible to have concurrent execution of memory and

arithmetic operations. The table also points out that the add/subtract unit is used for

multiplication/division as well as for addition/subtraction, making it unnecessary to

provide a separate carry-propagate adder for multiply/divide.

Chapter 4

Exp Exponent Control and

Local Decode

Frac
Add/Subtract Mul/Div

ront-en

Figure 4.2. SPUR FPU floor-plan. The five interacting datapath components are indicated.
The front-end has exponent, sign/tag and fraction sections.

Table 4.1: DataDath utilization for FPU instructions
Datapath Component Instructions

64

Front-ends LD_SGL, LD_DBL, LD_EXTl, LD_EXT2, ST_SGL, ST_DBL, ST_EXTl. ST_EXT2
Exponent FADD, FSUB, FMUL, FDIV, CVTS, CVTD
Sign(fype FADD, FSUB, FMUL, FDIV, FABS, FNEG
Add/Subtract FADD, FSUB, FMUL, FDIV, CVTS, CVTD
Multiply/Divide FMUL, FDIV

4.2. The Exponent & Fraction Front-Ends

The exponent and fraction front-ends are responsible for unpacking and packing

data on Loads and Stores. They convert data from extended precision to single and

double precision. The register file -- the FPU on-chip memory -- is also accessed by the

front-ends on Loads and Stores. The sign and tag bits are also manipulated here, and

special operands like zero and denorms are handled by the front-ends as well. Figure 4.3

shows a block diagram of the front-ends, together with the interactions with other

Chapter 4

datapath components.

Fraction Exponent

PADS -----,

i
! r-·
I j

.----j i
-----------~--------, + :.sl9~lilch:jl3lc;.-----~ i

I i
[[

------- ___________ _i _______ , i
:.l=P~~~~:I.DYj.---~---~ !

! ~-----l

<63>

frac-regbusA Type

i r· _______________ j_~
~ .. !;.3,p-J...ili~:l.ilt'<b . ._.J

'------. ... E'"·------J

exp-shifter

r-------------..
---------------~-l

L. .lJllilch:jlQn:~lll2."lti~

!

<0> <16>

exp-regbusA

Figure 4.3. The exponent and fraction front-ends. All components of the front-ends, except
the register file and sign and tag logic, are shown here. The solid lines and solid-lined logic
boxes show information flow on a Load, moving from the top of this page towards the bottom:
beginning with the pads, through the master and slave load latches and shifter, and to the regis­
ter bus. The dashed lines and the dash-lined logic boxes show information flow on a Store,
moving from the bottom of the page towards the top: beginning with the register bus, through
latches and shifter, and back to the pads. There are two lines that are exceptions, though -- the
solid line going up takes exponent bits from the input into the exponent front-end on a Load;
and the dashed line going down brings the output of the exponent front-end back to the frac­
tion front-end for a Store.

65

Chapter 4 66

4.2.1. Unpacking and Packing Data

The FPU converts or unpacks all incoming operands into a common internal format.

For extended precision, this involves extraction of the appropriate exponent, sign, and tag

fields for LD __ EXTl, with the fraction unaltered for LD_EXT2. For single and double

precision, the exponent has to be moved to the least significant position of the stored

exponent using a right shift. The fraction, on the other hand, is shifted left so that it is

positioned just after the binary point.

Corresponding reverse-mapping or packing has to be done when storing operands

back to off-chip memory. The exponent, sign and tag fields need to be brought together

for ST_EXTl, or extended precision store. And for single and double precision, the

exponent now gets appropriately left-shifted and the fraction right-shifted. Figure 4.4

shows the different data formats and the relative positions of the different fields.

<0> <7:0> <22:0>

SINGLE lsi E I F

<0> <10:0> <51:0>

DOUBLE lsi E F

<0> <16:0> <4:0> <31:0>

EXT! lsi E I ttl T I Ill

<63:0>

EXT2 F

<16:0> <0> <4:0> <63:0>

E 10~ F

COMMON INTERNAL FORMAT

Figure 4.4. Floating-point data formats. The sizes and positions of the different data fields as
stored in memory are indicated with respect to the common internal format, which is the way
operands are stored in the internal registers.

Chapter 4 67

4.2.2. Handling Special Operands

After computation, the FPU can only produce two types of result operands: a

normalized number or zero. On a Load, however, an operand could have one of three

other types as well: denorm, infinity or NaN. It is essential that the incoming operand

type be determined -- that is, the appropriate data type tags be set -- before it is stored in

a register.

Four pieces of information determine the three-bit encoding for the operand data

type, and Table 4.2 shows this encoding. If all bits to the right of the binary point are

zero, f-al/0 is set. e-al/0 or e-al/1 is set when all exponent bits are 0 or 1, respectively. f-

2msb indicates the setting of the second bit to the right of the binary point.

Table 4.2: Encoding for data type tags
bit<2> bit<1> bit<O>

Data Type
e-alll e-allO f-2msb f-allO

0 0 - 0 nonnalized
0 0 - 1 nonnalized, power of 2
0 1 - 0 denonn
0 1 - 1 zero
1 - 0 0 quiet NaN
1 - 0 1 infinity
1 - 1 0 signaling NaN
1 - 1 1 cannot occur

Don't care values in e-al/0 and f-2msb are indicated with dashes. In practice, only three bits
are needed to specify the seven operand types. The reduction of four variables to three bits is
made possible by having e-alll act as the control signal to a multiplexor which selects between
e-al/0 and f-2msb. The table spells out the encoding in tenns of four variables to attach a
clearer physical meaning to the three tag bits, and the conversion can be visualized by reading
each row as a three-bit encoding by merging the second and third columns.

The combination 000 is the value set by the hardware as the result of an arithmetic

operation. The combination 111 cannot occur, since both f-2msb and f-allO cannot be 1

simultaneously. The encoding 001 identifies operands which are exact powers of two,

and could conceivably be used by software to provide a fast scaling operation, often used

Chapter 4 68

in equilibration -- a technique involving multiplying some matrix elements by multiples

of two.

4.2.3. Conversion to Single and Double Precision

The instruction set is designed to allow maximum parallelism between memory

operations and arithmetic computations within the fpu. Thus, Loads and Stores cannot

cause traps or exceptions, but since intermediate results are in extended precision,

explicit instructions for conversion to single and double precision need to be executed

before storing a single or double precision operand.

If the result of a conversion is zero, the exponent gets the 8-bit or 11-bit

representation for zero in single and double precision, respectively. Otherwise, the result

exponent is the sum of the original exponent, the normalizing distance and 40 for

conversion to single precision (CVTS) or 11 for conversion to double precision (CVTD).

Correspondingly, the fraction first gets an alignment right shift of 40 or 11, followed by

rounding and normalization. If an operand is found to be a NaN or infinity during

conversion, an operand exception is signaled.

4.2.4. The Register File

All incoming operands and computed results are stored on-chip in the register file in

the common internal format. The register file is 87 bits wide, with 17 bits for exponent,

one for sign, five for tags, and 64 for fraction. The FPU has 16 externally addressable

registers, with RO hard-wired to zero and R15 reserved for control and status information.

Chapter 4 69

The register file has four ports, two for input and two for output. Thus at the

beginning of a two-operand arithmetic instruction, both operands can be read at the same

time. Recall that the FPU allows memory operations to overlap with arithmetic

operations, so a register write from a Load and a result register write can occur

simultaneously. Software convention is used to ensure that the two writes are to different

registers to ensure data consistency.

Reg-bus A

~rite*

Reg-bus B

Figure 45. FPU Register Cell. The cell allows simultaneous reads and writes to and from
busses A and B. Results of Loads and operands for Stores are sent on bus A while results of
arithmetic instructions are written back on bus B. A* implies the complement of a signal, and
so Write* implies Read (together with non-overlap times). Inverter #2 is designed larger than
inverter #1 to minimize delay time for register read, when it has to drive the relatively large re­
gister bus capacitance.

Figure 4.5 shows the circuit for the register cell. It contains nine active devices,

where four are transmission gates providing read and write access to the two data busses

A and B. The rest of the cell is a pseudo-static latch. During read, the latch feedback

path is closed, while for write, it is open. Thus there is never any fight between input data

and what is in the cell, making a more process-insensitive cell design easier.

Chapter 4 70

Both data busses are precharged to increase speed and reduce area and power of the

bus drivers. Since the high level at X (in Figure 4.5) is degraded by the access

transmission gates, the ratio of inverter 1 is skewed, with a stronger pull-down device

than usual. Inverter 2 is larger than inverter 1 to provide greater drive to allow for fast

discharge of the data busses.

Rc&ift:r Spec:ifior Bi'"
EN EN

3• 2 2• 1 1• o o• WrA RdA pbiEV phiEV•

Figure 4.6. The Register File Decoder. Two sets of decoders are necessary to read and write
. both busses. The design is pseudo-static, with pullup by P channel transistors with gates tied

to ground.

The timing of the register busses and register cell directly affect the timing of the

register file decoder. A new instruction is received at the end of phi3, and so the decoder

input latch changes in phi4. Thus it is not possible to use a dynamic decoder during phi4,

a phase ahead of the actual register read. Hence a pseudo-static decode scheme is

chosen, shown in Figure 4.6, so that the decode can complete in phi4 and still have all of

Chapter 4 71

phil for the register read itself. Another design option was to stay with a dynamic

decoder, but do the decode and read all in phi 1. This was rejected because the register

read time together with the data transfer to the main data busses and latching the data in

the data latches leaves little time margin for the decoder. Phi4 is used for effectively this

way, albeit at the expense of a small amount of DC power, and there is more design

margin for the read.

Table 4.3: Re!:ister File Timing
Component Delay

Decoder 8.8 ns
Reg Cell Read 4.8 ns
Reg Cell Write 4.5 ns
RegBus to MainBus 4.1 ns

Table 4.3 summarizes the delays in each of the circuit blocks of the register file.

The main data busses are static, unlike the internal register busses, and so the register

data is buffered by tri-state inverting buffers before they are latched. Since the main

busses have high capacitance, this extra level of buffering allows high cell speed without

needing very large device sizes in the register cell itself.

4.3. The Exponent Datapath

The exponent is stored internally as a 17 -bit number, in two's complement - 1

format. Even though extended precision requires a 15-bit exponent, two extra bits are

kept for handling gradual underflow. One bit allows the FPU to represent denorms in

normalized form, and the other bit allows evaluation of the product of two denorms.

Figure 4. 7 shows the floorplan of the exponent datapath. The three main

components are the difference unit, the normalization adjustment, and the

Chapter 4

overflow/underflow detection logic, indicated with dashed boxes in Figure 4.7.

I

j III
L•••4•••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••_.

BusA BusB

Figure 4.7. The exponent datapath. The exponent difference unit (I) controls the alignment
right shift for the fraction, shown as the output of MuxEb-Ea. The normalizing distance
(NDist) computed in the fraction unit 1 's detector, is adjusted in the normalization unit (II),
with the help of the final adder (labeled Eg ± El). The output of the overflow/underflow detec­
tor (III) is sent to the appropriate interface signals and the FPSW- the Floating-point Processor
Status Word.

72

Chapter 4 73

4.3.1. The Exponent Difference Unit

Determining the difference between the exponents of the two operands is the first

step in floating-point addition and subtraction. To achieve high speed for this operation,

the FPU sacrifices some extra area to provide two subtractors that compute (A-B) and

(B-A) concurrently. The positive difference is selected, and the seven lower-order bits

are sent to the fraction shifter decoder so that the fraction with the larger exponent is

right-shifted appropriately. The remaining bits of the difference are ORed to indicate

whether the exponent difference is greater than 128, in which case the fraction with the

larger exponent is given the maximum shift. A signal is also sent to the fraction unit

indicating which exponent was greater, and it is used to control a mux that selects the

fraction to be right-shifted.

4.3.1.1. A Fast Adder/Subtractor

A good deal has been published on addition and subtraction [Han87] in the past few

years, especially about carry propagation, which is usually the bottleneck for numbers

more than a few bits wide. As mentioned in Chapter 3, studies in VLSI complexity

issues in fast carry computation have led to many interesting implementation options,

and parallel-prefix methods of carry computation seem to provide better area-time

tradeoffs, especially for large data widths.

The FPU uses a variation of parallel-prefix computation for carry evaluation in most

of its wide adders, including the 17 -bit dual subtractors and normalization adjusting

adder, and the 66-bit adder and 67 -bit incrementer in the fraction unit. A prefix

computation is one in which the output depends only on the lower-order inputs and not

Chapter 4 74

on the higher-order inputs [Ladn80]. Binary addition can be transformed into a prefix

computation by introducing an associative operator (o) as follows:

(4.1)

(4.2)

c; =G; fori= 1,2, · · · ,n (4.3)

where

{

(giN 1, piNt)
(G; ,P;) =

(giN; ,p/N;)o(Gi-t, Pi-1) ifn~i>l

ifi=l
(4.4)

and the operator o is defined as:

(4.5)

(4.6)

Note that o is not commutative -- its left argument (g1 , p1) is treated differently from its

right argument (gr ,pr). After the carry bit c; is computed, the sum bits; is given by:

S; = plN;OC;_1 fori= 2, · · ·, n (4.7)

and

Sl =pl (4.8)

Given that (o) is associative, choose a m such that i~m>l and rewrite (G;,1 ,P;,1) as

follows:

(4.9)

where

Chapter 4 75

(4.10)

Observe that (Gi,. ,P,,.) and (Gi-m+t.l ,P,_,.+1,1) have similar functional forms. Both are

functions of i-m+1 consecutive input bits and both require i-m applications of the

associative operator o, and as a result, both can be computed by the same circuit.

In previous implementations of parallel prefix adders, the fan-in and fan-out have

usually been restricted to two to facilitate inter-cell routing [Bren82]. With such a

constraint, the layout of the carry computation logic stacks up as a right-angled triangle,

with the LSB of the carry logic needing to go fewer stages than the MSB of the carry

logic. Thus, there is a significant amount of layout that goes unused. In our scheme,

even though fan-in is restricted to two, the fan-out is variable, with multi-stage drivers

utilizing this unused layout area. One can formulate an optimization problem to

minimize carry propagation delay, while maximizing area utilization, and show that the

optimal carry propagation distance per stage varies non-linearly with the number of bits

[Wei85]. We restrict the buffer sizes to drive three different capacitive loads. Table 4.4

shows the carry depth, split and delay with increasing bits. Our adder performs

significantly better than an equivalent Brent-Kung adder, and the improvement increases

with word size.

Table 4.4: Optimized adder constrained to three buffer stages.
Data bits left right driver stages depth delay (ns)

4 2 2 0 2 5.0
8 5 3 1 4 9.2

16 11 5 2 6 12.9
32 24 8 3 8 18.1
48 39 9 3 10 21.8
64 51 13 3 11 24.1

Chapter 4 76

This design is used for the exponent and fraction adders, and is implemented in

fully static CMOS. Even though the cells are larger than their dynamic counterparts, the

non-overlap time between phases gets utilized for computation. The fraction adder is

also shared by several instructions at different cycles and phases, and a dynamic design

would increase the control complexity needed for precharge and evaluate signals.

Figure 4.8 shows the main components of the adder. The pre-condition logic transforms

the inputs into propagate and generate form according to equation 4.5, while the sum

logic implements equation 4.7. The carry generator implements the recursive relation

4.10, optimized for minimum delay.

a,..b,.

fast carry

generator

pre-condition sum

Figure 4.8. Floor-plan for optimized adder. The output s 1 depends solely on inputs a 1 and b 1;

Caut does not require a final exclusive-or, as is Lhe case wilh conventional carry computation.

Figure 4.9 shows the components of the fast carry generator, which consists of three

types of cells: black, white, and driver. The cells are designed with embedded routing

and matching cell pitches so that they can be abutted in any order. This proved very

helpful, since simple CAD tools were then written to create carry generators for any

desired data width. The white and driver cells are naturally inverting, but the black cells

Chapter 4 77

are not; thus, two versions of black cells were created, one generating complementary

output for true input, and the other generating true output for complimentary input,

saving extra delays due to signal inversion.

Pr

PI

gout = gl + P1 · g,

Pout =P1. Pr

Black Cell

Pr PI

Pout

White Cell Driver Cell

Figure 4.9. Basic cell types for fast carry generator. White cells and driver cells produce an
inversion from input to output; two types of black cells are used to provide the necessary·logi­
cal inversion.

A 5-bit example in Figure 4.10 illustrates the optimization in the carry generator.

The optimal split for five inputs is three on the top and two on the bottom in the first

stage. The two on the bottom are reduced at the next stage into one and one, while the

three on the top are reduced to one on the top and two on the bottom. In the third stage,

these two on the bottom are reduced to one and one.

It is not easy to determine the worst-case path of the carry generator by inspection,

since the optimizer tries to balance delay through black cells and through multi-stage

drivers. Timing simulation using Crystal [Oust83] was done to determine worst-case

delays in the different adders. For the 66-bit adder in the fraction datapath, the pre-

condition and sum logic accounted for 9 ns, and the fast carry generator required another

25 ns for a total adder delay of 34 ns.

Chapter 4

out

A4,B4

A3,B3

A2,B2

Al,Bl

AO,BO

Inputs Outputs

~ D C>
Black Cell White Cell Driver

Figure 4.10. Example 5-bit carry generator. The carry evaluation requires three stages and a
driver helps decrease the delay in the critical path from Al,B 1 to Cout

4.3.2. Overflow and Underflow Detection

78

Overflow and underflow detection involve comparisons against the maximum and

minimum exponents, respectively, and is complicated by the fact that all three precisions

-- single, double and extended -- are possible results. Table 4.5 shows the comparisons

required on the result exponent to determine overflow or underflow.

Table 45: Tests for determinin~? exponent overflow and underflow.
Precision Overflow Underflow

<16> * 1 <16> = 1
Single <16:7> '1:0 <16:7> = 1

<6:0> = 1 <6:0>= 0
<16> 'I= I <16> = 1

Double <16:10> * 0 <16:10> = 1
<9:0> = 1 <9:0> = 0

<16> * 1 <16>= 1
Extended <16:14> * 0 <16:14> = 1

<13:0> = 1 <13:0> = 0

Figure 4.11 shows the dynamic circuits used to test for all-0 and all-1. To detect if

all bits of a word are zero, a nor gate is used, with single N-channel transistors stacked up

Chapter 4 79

at each bit of the datapath pitch; the double buffered output is high only if all inputs are

low. Correspondingly, parallel P-channel transistors stack up to provide a nand gate to

detect if all inputs are 1; the signal after the output buffer goes high only if all inputs are

high.

Figure 4.11. Circuits for detecting if all inputs are 0 or 1. Dynamic CMOS circuits are used to
implement the logic, and the outputs go to C 2MOS latches, which are represented as buffers.
Both detectors evaluate when phi is high.

This design for the detectors leads to a fast and very compact layout. Figure 4.12

shows how the six all-0 detectors and the six ali-I detectors fit within the 17-bit exponent

datapath, leaving no wasted area.

4.4. The Fraction Datapath

Exponents and fractions undergo some data transformations independent of each

other during addition and subtraction instructions, and so an added allotment of chip area

for separate exponent and fraction units allows computations in these units to proceed in

parallel. This is possible in general, except for initial exponent difference calculation and

final exponent adjustment due to rounding or normalization, when there are data

dependencies between the two units.

Chapter 4

r ~· ··-·· ··:·---·· ···1· ------- ··:

i OJ .. I ··1
:0 j i
i 6Zl -~ i
1 i

,. ----- ,. ' ' .
!&t!obl!sc~!

l-8 i i l
L 611 l J

: ······] '· 1617

131 ~- 13

910 "1:::, 610 ••

1
. 6ZD

9ZD

or-~ ~ ~~~~-~lim
' ' '
~- --- ... --- ~--- -- - .. - - ·----------.. -- .. .!

phi phi"

Figure 4.12. Physical arrangement of the 12 detectors. All-0 detectors are shown as Z, and
all-1 detectors as I, bracketed by the MSB on the left and LSB on the right. For example, 1310
detects if bits <13:0> are all 1. Note that corresponding zero and one detectors, like 16Zl4
and 1310, or 16Zl0 and 910, always add up to the full exponent datapath width.

80

After the evaluation of the initial exponent difference, the first operation on the

significands is alignment of their binary points. This involves a right shift equal to the

exponent difference, which may be as much as (n+3) bits long, to accommodate ann-bit

significand and generate three extra bits for rounding required by the IEEE Standard.

The FPU designer has a choice of building the shifter in a single stage or in multiple

stages. The area needed for the shifter decreases as the number of shift stages increases,

but with a penalty in speed. An advantage in having a single-stage shifter is that the

logic to generate the 'sticky' bit (needed for directed rounding) folds neatly into the

· lower triangle left unused by the physical layout of the shifter in VLSI. The floor-plan

Chapter 4

for the fraction datapath for addition and subtraction is shown in Figure 4.13.

I

I
I

I

I

I -01
01

I

l
I

I

u1
01

"" ut
w-u1 I ,_ l Tst

IRIPLI
I--

I

I

l

l

<63:0>

Dul/04tU,_.c.....,. I

Roplcd'ilo

BUI Drivcm

AlAd!

-=:-1
DIAd>

1
MuxPO

l
MullA

OpALir<

LSbiliOIIIl. <dl ,___, '--!--
a.t.l3llill<o

r-*--1.
~iJIOull.alch

~ I I
LSbilllcLoj.:b

1---1 1
Muxll

l
OpBIAdl

I

B +/-A

j_
lnlLadl

~ 1
Campi em.,.

l
RJPL!Sbift

1
ISJbitlne

I
ln<:Oull.alcl!

~ 1
hDel«tar

BUlB

<4:0>

IE]
I

...-
I I RT&DT I

I I I RT&DT I

...-
I

l
I

I
<2,0>

J GIU

I ~

J ~

I ~

~--- 1
I
I
I

I

I!opoaoot I

a.. I
I

L--

/II
j GRS

I

J

Jl
J

I

BuoA

~

~R
--1

OUDd I
PLA I I

4hU.Inc h_
~

GRS

Figure 4.13. The fraction datapath for addition and subtraction. The data path is 67 bits wide,
to accommodate 64-bit extended precision numbers, together with 3 bits (Guard, Round and
Sticky) that provide correct, unbiased IEEE-style rounding. In addition to the register file, key
components in the datapath include the shifter, adder and incrementer, and a leading 1 's detec­
tor. These are highlighted in the figure.

81

The next step involves an addition or subtraction between the two fractions, one of

which is 67 bits wide; this leads to a 67-bit intermediate result in two's complement

form. The intermediate result of the addition may have to be incremented for two

Chapter 4 82

independent reasons: (1) if it is negative, and/or (2) if directed rounding requires an

increment. It is possible to combine these into one increment function, with appropriate

hardware embedded in the rounding logic and the logic for calculation of normalization

distance, thus avoiding another incrementer delay.

The final step, normalization, requires detection of the leading 1 in the intermediate

result, and a normalizing left shift to bring the leading 1 into the most significant bit.

Fast and efficient dynamic circuits can be used to detect the leading 1, and a bi-
.

directional shifter can be used to combine the functions of alignment right shift and

normalizing left shift. Given that an initial long alignment shift implies that rounding

will be done and will preclude a final long normalizing left shift, independent paths for

rounding and normalizing can be provided in the fraction datapath to take advantage of

this fact, thus reducing total latency and yet nominally increasing area.

4.4.1. The Shifter

The bi-directional shifter is used for alignment and normalization. For right shift,

the incoming word is 64-bits wide, and the shift ranges from 0 to 66, providing the Guard

(G), Round (R), and Sticky (S) bits for IEEE-style rounding. For left shift, the input

width is 67 bits, the output is 64 bits, and the shift range is 0 to 64. The shifter decoder

selects between the exponent difference and the normalizing distance for right and left

shift, respectively. If the exponent difference is greater than 66, the input is still shifted

right by the maximum shift distance. The shifter is designed to decode, shift, and

evaluate the Sticky bit in one phase time, and so the shifter is implemented as a single

stage to meet these stringent speed requirements. The three main components of the

Chapter 4 83

shifter are the shift distance decoder, the bi-directional shifter itself, and the logic for

sticky bit generation. The shifter floorplan is shown in Figure 4.14.

-

s~ ifter pecc der
Shift Amount

-
i Shfi

Left I
J

y r-+----
I Sticky
I

I I ,
I I

I I
Right

,
/V I

Barrel Shifter Sucky Bit Generator

Figure 4.14. Shifter Floor-plan. The single-stage shifter array forms an upper-right-angled tri­
angle, placed directly below the shifter decoder. The Sticky Bit generator, which also requires
the shift distance control lines and the data bus from the left, fits conveniently in the lower­
right-angled triangle, leaving no wasted area.

4.4.1.1. The Shifter Array

The shifter is designed as an array of transmission gates with source and drain

connected between input and output busses, with the gate controlled by the shift distance.

Since barrel shifters tend to be very wide because of large numbers of control lines (67,

in this case), it is important to design each shifter bit to be as narrow as possible. Ideally,

the layout for each bit should be metal-pitch-limited, since the shifter is the widest single

component of the entire fraction datapath. Dynamic circuits are used to minimize area

Chapter 4 84

by reducing both the number of active devices and the interconnect, and improve speed

by reducing load capacitance both on control and data busses. Additionally, the shifter

control lines come down vertically, while the left data bus staircases up from bottom to

top, so that control line capacitances are kept constant and skew minimized. Figure 4.15

shows a schematic of the shifter matrix, with device sizes and parasitic capacitances

indicated.

Vdd = 5 volts

All device widths are in microns

All devices have 2 micron channel length

Figure 4.15. Schematic of shifter array. When CFslifen is LOW, it is precharging both L and R
data lines. When it is HIGH, the shifter is active. CFshlen and CFshren determine left and right
shift respectively. For a right shift, for example, if bus L is selectively discharged low, and if
the shift control line Shfi is high, bus R is also pulled low.

4.4.1.2. The Sticky Logic

Three bits are required for correct, unbiased, IEEE-style rounding; they are called

the Guard, Round, and Sticky bits. The Guard and Round bits are the two least

significant bits available after the right shift. The Sticky bit contains information about

Chapter 4 85

all the bits to the right of the Round bit, that could have come out of the alignment right

shift. The Sticky bit is set if a 1 is present in any of the bits shifted out after the Round

bit. The logic used to generate the Sticky bit is shown in Figure 4.16.

Pass Gate 2nd stage NOR
1st stage OR

Figure 4.16. Sticky bit generation logic. The circuit has an active-low output and so is called
Sticky*. 64 OR gates, with inputs ranging from 1 to 64, correspond to shift distances from 0 to
63. The output of only one of these is selected depending on the shift distance.

Figure 4.17 shows the circuit schematic for the Sticky logic, which folds neatly into

the empty triangle from the shifter array. Again, dynamic CMOS circuit techniques are

used to reduce area and maximize speed, without having to make the shifter matrix any

larger.

4.4.1.3. The Shifter Decoder

To match the severe pitch-matching constraints of the shifter, the shifter decoder is

also designed with dynamic circuits to reduce area. It is essentially a NOR decoder, with

one level of pre-decoding. The pre-decoding further reduces the number of transistors in

the decoder matrix by half. This allows the transmission gates in the matrix to be almost

twice as large, helping to make the decoder faster. The decoder matrix is shown in

Chapter 4

To Sltifta Pu.p

i

Rigbt Shift Out latclt

Prcm MUXFGFL

Act u a dynamic latclt far illput dol&

Figure 4.17a. Circuit schematic & logic transitions for Sticky logic. The shift control lines
Slifi are common to the shifter and to the Sticky logic, as are the inputs Ai.

All device 1izca arc in lambda

llunbda= 0.8um

Vdd=5V

All devices""' of minimum length (2)

Figure 4.17b. Circuit schematic & device sizing for Sticky logic. All capacitances are in pF;
nodes X and Y have the most fan-out and fan-in respectively, and are consequently the most
capacitive.

Figure 4.18.

86

The decoder structure is quite regular, except for a little extra logic needed for

Shf66, the control line for the maximum shift distance. Since the decoder input is 8 bits

wide, we need to ensure that any number greater than 66 also gets the maximum shift of

66. This involves implementing the following logic function

((<l>v<2>v<3>v<4>v<5>)1\<6>)1\<7>) -- where the numbers refer to the bits input to

Chapter 4 87

,-1,

~ ~ ~ ~ r--- ____],

~

~ ~ ~ ~ r---
__,,
.

1-----i

~ ~ ~ ~ r--- --'

~

~ ~ ~ ~ r---1-----'

~ I
pre-decoding NOR decoding plane

3 ~

~ 6 . .

~ .~

~ ~

}<ll
}-_¢

}

~.

}
}
}

}

_(J--t>-

H-i:::

~=:K>---

-LJ:::

~=:K>---

D-t>--
~=:K>---

Shf 63

Shf 64

Shf 65

Shf 66

Figure 4.18. The shifter decode matrix. Bit<O> is pre-decoded, eliminating the need for
Ground lines and reducing the number of pass gates in the decoder matrix by almost 50%.

the decoder. Note that bit<7> indicates that the shift distance is greater than 128.

Since the decode and shift have to happen in the same clock phase, and both

components are dynamic, the shifter enable line should be asserted only after the decode

is complete. This self-timing is accomplished by a transition detector shown in Figure

4.19.

EN

Figure 4.19. Transition detector for enabling the shifter. When the decoder precharges, both
PO and Pl are high. Only one out of PO or Pl can be low after the shifter decoder has evaluat-

Chapter 4 88

ed, and this in turn enables the shifter control lines.

Table 4.6 summarizes simulation results for the 67-bit shifter. Note that the shifter

array and sticky-bit generator evaluate in parallel, once the shift decoding is completed.

Table 4.6: Timing for 67-bit bi-directional shifter.

Component Delay (ns)

Shift Decoder 7.8
Shifter Array 8.5
Sticky Logic 10.9

4.4.2. The Leading One's Detector

The task of a leading one's detector is to find the position of the leading nonzero

digit and output the shift amount coded in binary format to the shifter, for the

normalization left shift. The same output is used by the exponent unit to determine the

result exponent. When no leading 1 is found, the detector signals an all-0 fraction, acting

as an allO-detector.

A fast and compact leading 1 's detector poses a design challenge; in past designs,

this module has tended to be one of the slowest and most expensive components in a

fraction datapath [Tayl83]. Our design goal was that it evaluate in one phase, and it

turned to be fast enough and very compact as well. Dynamic circuits were used here,

providing adequate speed and density. Figure 4.20 shows the logical formulation of the

solution for an example 8-bit detector. With some transformations, the logic is reduced

to a cascade of OR/NOR gates with varying fan-in, which can be very efficiently

implemented using parallel N channel devices.

Domino AND gates [Kram82] with maximum fan-in of 4 were found to be optimal

in area and delay, and the 67-bit detector is implemented in 4 stages. The inverters at

Chapter 4

Bo
Bo

B1
Bl ----+....,_
B2
B2

B3
B 3 ------t--o_

B4
B4
Bs
B 5 --~,...,_~ .----*-+-+- S 2 = B 1-B 6·B s
B6
B6

B1
B 7 -----------:~"*-So= B 7

ANDPI..ANB OR PLANE

Figure 4.20. Logic for detecting the position of a leading 1. Crosses in the AND plane and OR
plane represent AND and OR gates respectively. This eight-bit example shows three succes­
sive levels of AND gates to form the terms S 7 to S 0, while 4-input OR gates generate the out­
puts 0 2 to Oo.

89

each stage are skewed with stronger N channels (ratio of P:N is 1 :3) to rrumrmze

sensitivity to charge sharing, and even though the worst-case voltage drop on a charged

node was 1.46 volts, the circuit retained a noise margin of at least 1.0 volt.

A smaller fan-in results in additional stages, but the circuit is less process-sensitive.

Again, in the layout of the Domino AND gates, the width of the long chain of N-channel

inputs is scaled with the smallest at the top, to further increase speed by 15% by reducing

capacitance [Shoj85]. The circuit schematic of the 1 's detector is shown in Figure 4.21.

..t.S. Rounding

The shifter is primarily responsible for generating the three rounding bits on the

right alignment shift for addition and subtraction. Generating these bits for multiply and

divide are a little more involved, especially for iterative algorithms, and is discussed in

Chapter 4

VDDisSV

Devices""' of minimwn leJ181h (2)

Allsiza ue in lambda

1 lombda = 0.8 um

All Capocitanco val.- ..., in pi'

Figure 4.21. Circuit implementation for leading 1 's detector. The Domino AND gates are res­
tricted to a maximum of four inputs and an extra pair of buffers is inserted between the second
and third AND stages to drive the large capacitance on node X.

90

the next chapter. In any case, a selector chooses between the add/subtract and

multiply/divide units' rounding bits, depending on the instruction executed, and latches

them in as part of the intermediate result.

The rounding bits are sent to a PLA together with the intermediate result's least

significant bit (LSB) and two sign bits -- the sign of the intermediate result and the sign

of the final result. The user-specified two-bit rounding mode is also input to the rounding

PLA, leading to eight total inputs. The PLA then determines (1) the least significant bit

of the result, and (2) whether the intermediate result requires to be incremented. The

PLA also generates the two rounding tag bits, which signal whether rounding was done.

and if so, whether an increment was necessary. Thus the PLA provides four outputs.

The IEEE Standard provides four different rounding options or modes: unbiased

rounding to the nearest LSB, two modes of directed rounding to plus and minus infinity,

and truncation. Depending on the rounding bits, a positive intermediate result could

require an increment for rounding up to plus infinity or to nearest even, while a negative

Chapter 4 91

intermediate result could require to be incremented to round down to negative infinity or

to the nearest even LSB. Truncation, the fourth rounding mode, is the only one which

simply retains the present value of the LSB and does not require an increment.

The rounding PLA as described above requires eight inputs and four outputs, and

when optimized has 28 product terms. With extra logic at the input and output, the

intermediate sign bit and even the LSB could be generated outside the PLA, reducing the

total number of inputs/outputs by one or two. This, in turn, reduces the product terms

from 28 to 15 for one less input, or 11 for one less input and one less output. We still

implemented the larger PLA, because the design was the most regular and led to very

little increase in area or delay while reducing design time.

4.6. Summary

Datapath design considerations for fast addition and subtraction in VLSI floating­

point units are presented in this chapter. The main components that are area-intensive

and time-consuming are identified, and specific design techniques are developed to yield

area-time efficient solutions. The SPUR FPU, implemented in 2 micron CMOS

technology, is used as a case study, where operation times are optimized for extended­

precision arithmetic. Design for the very wide data widths in floating-point units present

interesting challenges, and these are explored in relation to specific design examples.

The design consequences of decoupling memory operations from arithmetic

functions are explored, and the area-time complexity of unpacking and packing data on

loads and stores are presented. A register cell with two read and two write ports is

shown, together with its pseudo-static decoder, designed specifically for very wide data

Chapter 4 92

widths. The 87-bit-wide 16-word register file has an access time of 17.7 nanoseconds

and occupies 4% of the entire chip area.

The datapath components for fast exponent evaluation are presented, including a

dual-subtracter and overflow/underflow detector for multiple operand precisions. An

optimized parallel-prefix adder is designed, based on a more realistic model of fan-out

and interconnect delay, which is especially suitable for large data widths. Buffers of

variable size are inserted in the carry-computation array to balance critical delay paths at

every carry stage, leading to gains in both area and time. Our 66-bit adder occupies 2.5

square mm and the worst case carry computation requires 25 nanoseconds.

A 67-bit bi-directional single-stage shifter design is shown, together with a fast and

compact decoder matrix including a self-timed enable circuit to allow single-phase

operation of both decoder and shifter. The barrel shifter is almost twice the size of the

66-bit adder, making it the single largest datapath component, but it evaluates in just 18.7

nanoseconds. A novel design is also presented for the generation of the Sticky bit, which

requires no extra area and marginally impacts the shifter speed.

Design of rounding logic to support the different rounding modes of the IEEE

Standard are discussed, including a way to eliminate an extra increment delay due to

rounding. The design of a fast and area-efficient leading-one's detector is presented, that

determines the position of the leading one in a 67-bit word in 15 nanoseconds and

requires 2.3 square mm.

Hu [Hu87] helped with the layout and circuit simulation of some of these datapath

components.

Chapter 4 93

4.7. References

[Bren82] R. P. Brent and H. T. Kung, A Regular Layout for Parallel Adders, IEEE
Trans. on Computers, Vol. C-31, No. 3(March 1982), pp. 260-264.

[Han87] T. Han and D. A. Carlson, Fast Area-Efficient VLSI Adders, Proc. Eighth
IEEE Int' I. Symposium on Computer Arithmetic(May 1987), pp. 87-94.

[Hu87] T. Hu, Circuit Design Techniques for a Floating-Point Processor, Computer
Science Division (EECS) Report No. UCB/CSD 87/372, University of
California, Berkeley (September 1987).

[Kram82] R. Krambeck, C. Lee and H. Law, High-Speed Compact Circuits with
CMOS, IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 3 (June
1982), pp. 614-619.

[Ladn80] R. E. Ladner and M. J. Fischer, Parallel Prefix Computation, JACM, vol. 27,
No. 4(0ctober 1980), pp. 831-838.

[Oust83] J. Ousterhout, Crystal: A Timing Analyzer for NMOS VLSI Circuits, Proc.
Third Caltech Conference on VLSI(1983), pp. 57-70.

[Shoj85] M. Shoji, FET Scaling in Domino CMOS Gates, Proc. International
Symposium on Circuits and Systems(June 1985).

[Tayl83] G. S. Taylor, Arithmetic on the ELXSI System 6400, Proceedings of IEEE
1983 6th Symposium on Computer Arithmetic(1983), pp. 110-115.

[Wei85] B. W. Y. Wei, C. Thompson andY. Chen, Time-Optimal Design of a CMOS
Adder, Technical Report No. UCB/CSD 86/252, U.C. Berkeley (August,
1985).

5
Multiply/Divide Datapath
Design Considerations

94

This chapter continues the discussion on datapath design, emphasizing techniques

for the design of high-performance multiply and divide units used in building floating­

point processors in VLSI. Area-time tradeoffs between various serial, recursive and

parallel algorithms for multiply and divide are considered, using the SPUR FPU

implementation as a case study. Details of the algorithms chosen, timing and overlap of

pipeline stages, hardware needed to support IEEE-style rounding, and logic and circuit

design issues are presented, as well as the exploration of design techniques for

minimizing area and maximizing throughput.

Chapter 5 95

5.1. Implementation Considerations

Recent papers [Gama86], [Uya84] show that 32 bit multipliers require about 40,000

transistors, and with current 2 micron technology, take up about 30 square mm. Full 64-

bit array multipliers are still difficult to integrate onto a single chip. Even if we could

build a multiplier that computed in a single cycle, it would be difficult to build a

proportionately fast divider, and divide times must improve with multiply, otherwise

algorithm designers will be tempted to devise means to avoid division. Using the relative

frequencies in Table 2.6, multiply and divide together account for 40% of the operations,

and so should preferably be allocated close to that percentage of the total datapath area.

Given the above area constraint, iterative algorithms seem more feasible than purely

combinational algorithms in present-day technology. If multiplication and division can

share much of the hardware, more aggressive algorithms can be chosen within the same

area budget.

Figure 5.1 shows the entire datapath for multiplication and division. Modules that

are density-critical are designed using dynamic circuits, and modules that have rigid

timing constraints and where precharge times cannot be overlapped with evaluation

times, are designed using static circuits. The hardware blocks that are not shared are the

multipler Booth recoder and the divider quotient selector and accumulator, accounting

for 8% of the entire multiply/divide datapath; the rest of the hardware is common to both

multiplication and division.

Chapter 5

----------------- -------------------+-- ----~ :··----·;J;·-·····:

·-·----~------~-- ------~~~~------- __ !_j \::, Bo~th \::,
I 1-w ~_I! ..,
I c..,..MJ>r/IM' I i i I Llldl i
I h ~W« ~7 \ 1 rf

•·······-········ ·····W"""i,··W"""i,······ ·····.:, : I Mux :

m ~~~*-~:··-:3·-··+····--·;
~~~~ 

VII 
n 

vm 

v 

I 

I 

IX 

I Sbift.Rl I Round 

VI 

•················ .................... ~ .... 1 

a .. A 

Figure 5.1. The Multiply-Divide Datapath. The datapath has the following sections: the multi­
plier 8-bit right shifter (!); input latches for holding the operands and the complement of the 
multiplier/divisor (II); multiplicand/divisor select (IJI); carry-save-adder tree (IV); partial sum 
and partial carry formation (V) and quotient accumulation (VI). The Booth encoder (VII), quo­
tient selection (VIII) and generation of rounding bits (IX) are off to the right side, with (/), 
(VII), and (VIII) being the only components not shared between multiplication and division. 

96 



Chapter 5 97 

5.2. The Multiplier 

As described in Chapter 3, it is not feasible to build an FPU with an array multiplier 

that could compute a product of two extended-precision (64-bit) operands in a single 

cycle with currently available technology. We considered several iterative schemes 

including smaller arrays but it was difficult to integrate even a 32 x 32 array within our 

area budget for multiplication and division. Consequently, we moved to a 64 x 8 

iterative algorithm that evaluates an extended-precision product in nine iterations. 

5.2.1. The Algorithm 

Figure 5.2 illustrates the formation of the multiplier partial products. The multiplier 

is shifted right by eight at the beginning of every iteration, providing the modified Booth 

recoder with a new byte. The recoder views the byte as consisting of four triplets 

overlapping each other by one bit, and each triplet is recoded to indicate one of five 

possible multiples of the multiplicand: ±1, ±2 or zero times the multiplicand. The four 

sets of outputs of the Booth recoder from the four overlapping triplets control a set of 

four multiplexors, selecting the proper multiples of the multiplicand for each triplet. 

Each multiplicand multiple is shifted left two bits from its less significant multiplicand 

multiple, and all are sign-extended to 75 bits, which is the maximum length of the partial 

product registers. 



Chapter 5 

CSA <0> ~s s!l~·Q~ 

CSA<l> ~s <!ll·Q> 

CSA<2> Hs sftHl~ 

CSA <3> ~s sZJ·Q~ 

Master I I . 75 

Slave I H 67 8 I 
: i 

Master 2 I ! 75 16 

Slave 2 r 67 16 

Slave 8 67 64 
: 

Master 9 F o-4 64 lLiGJ• OR ~ 
II Zeros Sticky Bit 

Figure 5.2. Forming the Product of two 64-bit operands. The width of the CSA, multiplexors 
and PPS/PPC are 75 bits. After right-shifting 8 bits, the sum of the two partial products is 67 
bits (66 bit magnitude and 1 sign bit). 

98 

The four multiples of the multiplicand are added to the partial 'sum' and 'carry' 

terms of the previous iteration, using four rows of carry-save-adders. These adders 

postpone the need for complete product evaluation until the very last iteration, helping to 

avoid carry propagation delay from determining the speed of an iteration. The partial 

'sum' and 'carry' are shifted left 8 bits and 7 bits respectively, when looping them back 

to be the new inputs of the CSA for the next iteration. The multiplexers and CSA must 

be fully sign-extended to the most significant side, since the operands are in two's 

complement form and can be both positive and negative. A carry-look-ahead adder is 

necessary twice for multiplication -- to form the complement of the multiplicand and to 

form the final product -- and instead of duplicating it here, the fraction adder for 

add/subtract is used instead. This increases the setup and completion times by one 



Chapter 5 99 

cycle, but reduces the area of the unit by 14%. 

5.2.2. The Multiply Inner Loop 

The four rows of carry-save-adders are in the critical path for the multiplier inner 

loop, and Figure 5.3 shows the organization of the CSA tree. To reduce the CSA delay, 

CSA rows 0 and 1 evaluate in parallel, reducing the net delay to three CSA stages. This 

makes the interconnect less regular, but provides a 25% speed improvement in the CSA 

stage. For the divider, only one row of the CSA tree is necessary, and so we can use the 

isolated CSA row 0 to advantage. 

Mux3<1> Mwt3<0> 

Mux2<3> Mux2<2> Mux2<1> Mux2<:0> 

OMuxO<l> MuxO<O> 

Row 1 

Row2 

Row3 

RowO 

Figure 5.3. Least Significant Bits of the CSA Tree. CSA row 0 has MuxO and the partial pro­
duct sum and carry vectors as inputs, while CSA row 1 gets its inputs from Muxl, Mux2, and 
Mux3. Since all six inputs are available at the same time, these two CSA rows can compute 
simultaneous! y. 

In the multiplier inner loop, multiplicand selection is overlapped with shifting and 

rounding the partial product vectors. During each cycle, two phases are for signals 



Chapter 5 100 

controlled by the master, and the other two phases are for the evaluation of signals 

controlled by the slave. Blocks that are controlled by the master are the Booth recoder 

and the CSA tree, and blocks controlled by the slave are the multiplexor set and the 

shifter between master and slave partial product latches. Figure 5.4 shows the multiplier 

pipeline. 

Master 

B~tft-R.c;code 
·· ... --

Slave 

··-·f-·---. 
,.------.. : r--'·::..,· .,...----.. 

MCD·Select ·. 
·. 

Master 

·· .... 
Bootn'-Recode ·. 

···i. 

cS'A><J.:O> 
·. '• ·. 

: · .. . .. 
r-------..!r-··~-~----.. 

csA-~v>> 

··.: ., ... 

'• 

r------....,_ i r-··-_···_,_· • ......--------. 

Shif;Right 8 
··.,. 

Slave 

·.,. 

Figure 5.4. The Multiplier Pipeline. In every phase controlled by the master, the carry-save 
adder computation is overlapped with Booth recoding of the next most significant byte; in the 
slave phase, the eight-bit shift from master to slave latches proceeds in parallel with the selec­
tion of the multiplicand multiples for the next byte. 

We have just shown how the different parts of the multiply inner loop are pipelined. 

Several of the modules were designed using dynamic circuits to meet area, interconnect 

and timing constraints. Table 5.1 shows the design style used for building the modules in 

the multiply/divide inner loop, together with their area and time relationships, normalized 

to the Booth recode block. The speed of the pipelined inner loop is determined by the 

stage with the longest delay. In this case, the CSA tree is significantly slower than all the 

other components; going to a radix 16 scheme would require eight rows of CSA, with a 



Chapter 5 101 

delay of five stages. This would double the CSA area requirement, and increase the 

delay by 67%. Clearly, carry-save adders become the limiting factor in the speed of 

high-radix iterative multipliers. 

Table 5.1: Area-Time Relationships of Multiply Function Modules 
Function Design Style Area Time 

Booth Recode Dynamic 1.0 1.0 
MCD Select Dynamic 2.6 0.9 
CSA Tree Dynamic 9.9 4.3 
Partial Sum & Carry Static 8.7 0.5 

Area and time are normalized to the Booth recode block. The CSA, for example, is almost ten 
times larger and more than four times slower than the Booth Recode block. 

The four rows of carry-save-adders take the longest time among the pipeline 

components. The dynamic CSA design was 16% smaller than its static counterpart, and 

was still able to meet the timing requirements. If we went to a more aggressive clocking 

scheme, it would be feasible to build the four multiplexors and the CSA tree static, and 

modify the pipeline to have only two stages. One stage could perform Booth recoding 

and MCD selection, while the other could do CSA evaluation and the right shift. Not 

only could the disparity between the stages become smaller, but we could also utilize two 

out of the four clock non-overlap times. 

5.2.3. Rounding 

The ability to perform unbiased rounding with error less than half a unit in the last 

place requires three extra bits, called the Guard, Round and Sticky bits. The G and R bits 

are used if the intermediate result of a division is between .5 and 1 and hence requires a 

one-bit normalizing left shift. The Sticky bit is equal to zero only if all subsequent bits in 



Chapter 5 102 

a result of infinite precision are zero and is used to identify the half-way case for 

unbiased rounding. 

During a multiply operation, the vectors containing the partial products are shifted 

right eight bits before being returned for the next iteration. These two eight-bit quantities 

are added together, and ORed to form the 'partial sticky' bit. This is fed back to the 

rounding adder for the next iteration. At the end of the final rounding addition, bit<O> of 

the result is the most significant bit of the rounding adder result, followed by the G bit. 

The R bit is zero, since the result must be in a range between 1 and 4. The OR of the 

remaining bits of the rounding adder provides the Sticky bit, as shown in Figure 5.5. 

Since each iteration takes. half a cycle in this pipelined scheme, partial product 

evaluation takes four and a half cycles. It takes almost that long, again, for evaluating 

the complement of the multiplicand, the final carry-propagate addition and the rounding, 

making the total multiply latency eight cycles. Some of this can be saved by duplicating 

the fraction ALU in the multiply/divide unit, and also duplicating the rounding PLA that 

generates the least significant bit. Currently, both of these are shared with the fraction 

unit; if these were duplicated, the potential time saving can be two cycles or 20%. 



Chapter 5 

Iterations 1 to 8 Iteration 9 

PPS<7:0> PPC<7:0> PPS<7:0> PPC<7:0> 

Cin Round Adder 

Cout<6> 

(Frac Cin) 

Sticky bit 

Figure 55. Multiply Rounding. For the first eight iterations, the L, G, and S bits are ORed to 
form the temporary Sticky bit, which in turn is ORed with the six least significant bits out of 
the round adder in the next iteration. The carry out of bit<6> (Guard bit position) in the last 
iteration becomes the carry input to the adder summing the partial product sum and carry vec­
tors in the fraction unit. 

103 

The rounding bits generated at the end of the final iteration are sent back to the 

add/sub fraction unit, together with the partial product sum and carry bits. The partial 

product bits are added in the carry-propagate full adder to form the intermediate result, 

while the rounding bits are ·multiplexed in directly. The intermediate result then goes 

through the process of rounding and normalization, just like any other arithmetic 

instruction. 



Chapter 5 104 

5.3. The Divider 

Addition and multiplication in VLSI arithmetic accelerators have received a lot of 

attention lately, but not much work has been reported to build fast division schemes in 

VLSI. As discussed in Chapter 3, restoring divide is the least expensive approach for 

radix-two division, but the cost increases exponentially with the number of bits generated 

per iteration [Gosl80], and the same is true of parallel-serial schemes [Zura81]; on the 

other hand, the problem with multiplicative inverse schemes is that quotients and 

remainders are incorrectly rounded. Quotient digit selection is the focus of attention of 

SRT division [Robenson65] [Atkins67], and redundancy in the representation of quotient 

digits allows corrections in subsequent iterations, eliminating the need for back-tracking 

after every remainder iteration. In comparison with other algorithms, higher radix SRT 

division provides significant gains in area and speed, provided compact quotient­

selection logic is designed, and each iteration can be pipelined, with overlapping stages 

like partial remainder formation and quotient selection evaluating concurrently. 

5.3.1. The Algorithm 

The algorithm implemented in our FPU is based on radix-four non-restoring 

division and uses estimates of the divisor and partial remainder for quotient estimation. 

A redundant representation is used to represent the radix-four quotient digits, while there 

is no redundancy in the partial remainder. Plotting the partial remainder against the 

divisor (P/D plots), it can be shown that six bits of remainder and four bits of divisor are 

sufficient to determine the next quotient digit, guaranteeing error bounds will not be 

exceeded [Frei61] [Atki68]. 



Chapter 5 105 

The division is done iteratively, with two quotient bits computed per iteration, with 

the equation expressed as follows: 

where j =index of the recursive loop <33:0>, 

Pi =partial remainder after the jth loop, 

Po =dividend, 

qU+I) =quotient digit after the jth loop, 

d = divisor, and 

r =radix <4>. 

Eight bits of partial remainder 'sum' and 'carry' vectors are added and the six most 

significant bits of this truncated partial remainder are sent to the quotient selection logic, 

together with the four most significant bits of the divisor. The quotient selector in turn 

generates three bits, representing one of the five possible values of the quotient digit. 

Two registers store the generated quotient bits at each iteration, one holding the positive 

quotient values and the other holding the negative quotient values. A final carry-look­

ahead subtraction of the negative quotient from the positive quotient is necessary to 

generate the true quotient. The output of the quotient selection logic is also decoded to 

control a multiplexor that decides what multiple of the divisor to use for the next 

iteration. Figure 5.6 shows how the positive and negative quotients are formed. 



Chapter 5 

<64:0> 

PPS-Master 34 

+ 

PPC-Master 34 

Remainder 

<.67:0> 

Positive Quotient 

Negative Quotient 

Figure 5.6. Forming the Remainder and Quotient. The sign of each quotient digit (two bits) 
determines whether it will be latched in the positive or negative quotient latches, which are 
each 68 bits wide to include the three rounding bits. A carry-propagate addition of the partial 
remainder vectors at the end of the final divide iteration generates the remainder. 

5.3.2. The Divide Inner Loop 

106 

For the divider, the partial product latches are used to hold the partial remainders, 

with one modification. Multiplexors in front of these latches let us load the master with 

the dividend at the very beginning of a divide. The PPC latch gets loaded with zero. The 

partial remainders are shifted left by two bits after every iteration. 

Since the divider uses only one row of the CSA tree, one of its rows is separated out 

from the rest of them, to enable this fast and direct path for the divider. Partial remainder 

evaluation and quotient estimation are done in parallel. In the remainder evaluation, the 

CSA and left shift operations are split into master and slave phases. For the quotient 

evaluation, the 8-bit estimation adder is evaluated at the master time, while the quotient 



Chapter 5 107 

selection PLA and the divisor selection is done at the slave time. The divider pipeline is 

shown in Figure 5.7. 

Slave Master Slave Master 

'------------1·-----------: 

csAi <0> 

~...... : 

r------------,·--r-------·---: 
csAi<O> 

Q 4Ider 
............................. :: ................... .. 

.... : 
r----i----.. 

Q~LA 

.. ....... 

QUarn!NT 

Figure 5.7. The Divider Pipeline. In the master phase, the carry-save adder generates the par­
tial remainder vectors, whose eight most significant bits become the inputs of the quotient 
adder. In the slave phase, the output of the quotient selection PLA from one iteration controls 
the selection of the divisor multiple for the next iteration. 

This divider requires 34 loop iterations or 17 cycles to compute the division of two 

64-bit operands. The number of cycles is significantly less than all the other FPU 

implementations compared in Chapter 2. There are several reasons for the speed of this 

division scheme. First, we use radix four, allowing the evaluation of two quotient bits 

per iteration. Second, non-restoring divide allows us to look ahead for quotient selection, 

keeping exact quotient determination until later, without backtracking at every iteration. 

Third, a small degree of redundancy in the quotient digit representation keeps us from 

having to generate more costly multiples of the divisor, albeit requiring an increase in 

quotient selection logic. Lastly, the concurrency between partial remainder formation and 



Chapter 5 108 

quotient selection significantly increases algorithm efficiency. Table 5.2 shows the 

relative area-time cost for different sections of the divide pipeline, normalized to the 

divisor select block. 

Table 5.2: Area-Time Relationships of Divide Function Modules 
Function Design Style Area Time 

Divisor Select Dynamic 1.0 1.0 
CSARow Dynamic 4.1 3.2 
Quotient Adder Static 0.4 3.5 
Quotient PLA Static 0.5 4.8 
Quotient Accumulate Static 6.4 0.8 

Area and time are normalized to the divisor select block. The quotient PLA, for example, is 
half as large and almost five times slower than the divisor selector. Compared to Table 5.1 for 
the multiplier, the pipeline stages are more balanced here, with the quotient selection PLA tak­
ing about 35% longer than carry-save addition or quotient addition. 

5.3.3. Quotient Selection 

An integral part of the divide scheme is the logic for quotient selection. To keep the 

quotient selection logic from becoming the critical path, the quotient adder and PLA 

were split into two phases. The adder can now be dynamic, since it can be precharged 

when the PLA evaluates, thereby saving area. The PLA that generates the two bits of 

quotient per iteration, gets its inputs at the beginning of every slave phase and has to 

evaluate the quotient bits by the end of that phase. To achieve this strict timing 

requirement, we went with a pseudo-static PLA design. At the expense of a little DC 

power, output evaluation can be done in a single phase time. There are ten inputs to the 

PLA (six bits from the quotient adder, and four from the divisor) and three outputs (two 

quotient bits and the sign bit). Two optimizations were done to reduce the size of the 

PLA. First, the quotient sign bit is the same as the sign of the partial dividend, and hence 



Chapter 5 109 

does not have to be a PLA output. Second, with optimal encoding of the PLA outputs, 

the number of product terms were reduced significantly. Given the small number of 

outputs, it was possible to exercise the PLA minimization tools [Rude86] to look at all 

possible encodings of outputs to find the one that resulted in the smallest number of 

minterms (*). Table 5.3 summarizes the results. 

Table 5.3: Effect of Output Encoding on the Quotient PLA 
Output Twelve Unique Output Encodings 

Q=O 0 0 0 1 1 1 1 1 1 3 3 3 
Q=1 1 1 3 0 0 2 2 3 3 0 1 1 
Q=2 2 3 1 2 3 0 3 0 2 1 2 0 
P-Tenns 43 26 26 26 26 29 30 27 27 26 44 25* 

Quotient selection takes the longest time for radix 4 division; remainder evaluation 

takes only 40% of the time of quotient selection. For radix 16 division, there is no extra 

cost in remainder evaluation, but quotient selection area increases by about 6 times. In 

the critical path, we now require several quotient adders that work in parallel, with the 

final result muxed out to the quotient PLA. The extra time cost is about 30%. Hence this 

will limit the speed of SRT division at higher radices. 

5.3.4. Rounding 

The divider must provide three rounding bits along with a 65-bit result. Since two 

quotient bits are generated at every iteration, 34 iterations are necessary to generate the 

partial remainder and quotient vectors. After adding the two partial remainder vectors, 

the sign of the remainder is returned to the multiply-divide unit. The OR of the rest of 

the bits provides the 'partial sticky' bit. Using a 3-bit rounding subtractor, which uses 

the complement of the sign of the remainder as carry, bits <2:0> of the quotient vectors 



Chapter 5 110 

are subtracted. The least significant bit is ORed with the 'partial sticky' bit to form the 

final Sticky bit, while the other two bits of result provide the Guard and Round bits. The 

carry out of the subtracter goes out to the fraction adder, as shown in Figure 5.8. It 

would be possible to eliminate most of this logic if we had a 68-bit ALU. But since we 

share the ALU with the fraction unit, which has only a 65-bit ALU, we have to retain this 

logic. 

POSQ<67:3> NEGQ<67:3> POSQ<2:0> NEGQ<2:0> 

RemSign* 

RomSticky 

Figure 5.8. Divide Rounding. The carry-propagate adder in the fraction unit adds the partial 
remainder vectors to generate Remsign*, the complement of the remainder sign. The least 
significant bit out of the 3-bit subtractor is ORed with RemSticky -- the OR of all bits of the 
remainder -- to generate the Sticky bit 

Just as for multiplication, the rounding bits generated at the end of the final iteration 

are sent back to the add/sub fraction unit, together with the positive and negative quotient 

vectors. A subtraction of the negative quotient from the positive quotient yields the 

intermediate result for the quotient, while the rounding bits are multiplexed in directly. 

The intermediate result then goes through the process of rounding and normalization. 

just like any other arithmetic instruction. 

Note that generation of the rounding bits for divide requires less than 50% of the 

logic necessary for multiply rounding, but requires more time after the final iteration 

. because of the full carry-propagate addition of the partial remainder vectors before the 



Chapter 5 111 

sticky bit can be generated. 

5.4. Summary 

This chapter presents techniques for the design and implementation of fast multiply 

and divide units in VLSI. Algorithm area-time tradeoffs indicate that in presently 

available 2 micron technology, it is difficult to implement large array multipliers on a 

single chip, especially if it is to include a concomitantly fast divider. Consequently, 

iterative algorithms are chosen for both multiply and divide. 

Techniques are developed in this chapter for pipelining an iterative 64 x 8 

multiplier to provide a 64 x 64 multiply in nine iterations, with two iterations per clock 

cycle. Effectively, the inner loop provides the speed of a 64 x 16 multiplier, for 

signifantly less area. This is made possible by overlapping pipeline stages, maximizing 

throughput and resource utilization. Area-time tradeoffs are examined to determine 

circuit design styles for optimum performance. A method is outlined for the formation of 

the rounding bits-- Guard, Round and Sticky-- that requires minimal hardware without 

slowing down the iteration pipeline, and proceeds in parallel with formation of the final 

product. 

The design of a radix-4 SRT divider is presented that computes the iterations for an 

extended precision divide in 17 cycles. Even though two quotient bits are generated per 

iteration, pipeline stages are overlapped to allow parallelism between quotient selection 

and partial remainder formation, making it possible for four quotient bits to be generated 

every cycle. Consequently, we have a divider that provides the speed of radix-16 division 

for the area of only a radix-4 divider. Area-time tradeoffs of key divider blocks are 



Chapter 5 112 

presented, together with a method for optimizing the quotient generation PLA. The 

hardware required to support IEEE-style rounding is also presented. 

Significant hardware sharing occurs in the implementation of the multiplier and 

divider, making it possible for the entire multiply-divide unit to occupy no more than 

23% of the entire FPU area, while performing extended-precision multiplication and 

division in 0.9 and 2.1 microseconds, respectively. Further speed enhancements in going 

to similar but higher-radix iterative schemes will be limited by carry-save addition delay 

for multiplication, and quotient selection delay for division. 



Chapter 5 113 

5.5. References 

[Atki68] D. E. Atkins, Higher-Radix Division Using Estimates of the Divisor and 
Partial Remainders, IEEE Trans. Computers, Vol. C-17, No. JO(October 
1968), pp. 925-934. 

[Frei61] C. V. Freiman, Statistical Analysis of Certain Binary Division Algorithms, 
Proc.IRE, Vol. 49(January 1961), pp. 91-103. 

[Gama86] A. E. Gamal, A CMOS 32b Wallace Tree Multiplier-Accumulator, Proc. 
ISSCC(February 1986), pp. 194-195. 

[Gosl80] J. B. Gosling, Design of Arithmetic Units for Digital Computers, Springer­
Verlag(1980). 

[Rude86] R. Rudell, ESPRESSO, 1986 VLSI Tools, Report No. UCB/CSD 
86/272 (1986). 

[Uya84] M. Uya, A CMOS Floating Point Multiplier, IEEE J. Solid-State Circuits, 
Vol. SC-19, No.5(0ctober 1984), pp. 697-702. 

[Zura81] J. Zurawski and J. B. Gosling, Design of High-Speed Digital Divider Units, 
IEEE Transactions on Computers, Vol. C-30, No. 9 (September 1981), pp. 
691-699. 



114 

6 Control Design Considerations 

This chapter presents design considerations for the control unit for memory and 

arithmetic operations. Basic floating-point units are inherently datapath-intensive, and 

the very wide data widths present unique challenges for control unit design. 

The chapter begins with a presentation of the design considerations specific to the 

FPU control unit, providing a basis for appreciating the major limiting factors of 

performance in general. In previous chapters, the advantages of decoupling memory and 

arithmetic operations have been enumerated; this chapter shows the overhead incurred in 

control unit design to implement this parallelism between input/output and arithmetic. 

· The design of the components of the FPU control unit, including instruction decoding, 



Chapter 6 115 

the load/store pipeline, the arithmetic state machine and cycle counter are presented, 

together with tradeoffs for the partitioning of central control into multiple PLAs. 

The discussion then moves to clocking issues in processor design, especially to the 

considerations of charge redistribution and clock skew with dynamic circuit designs. As 

processors evolve towards faster clock rates and smaller cycle times, the tolerances 

between non-overlapping clock edges decrease. This makes the skew or relative delay 

between clock edges even more pronounced, becoming a major factor in limiting further 

speed-up of the processor clock rate. Different ways of minimizing and controlling clock 

skew are investigated, and the results of applying a specific approach presented. 

6.1. FPU Control Unit Overview 

Conceptually, the control unit may be perceived to have three components: 

instruction decoder, memory control and arithmetic control. The instruction decoder 

receives control signals on the Instruction Bus and other interface signals, and decides to 

activate either the memory control or the arithmetic control, as shown in Figure 6.1. 

Load and Store instructions may be issued once every cycle, but since they take four 

cycles to execute, these instructions need to be pipelined in four stages. Arithmetic 

instructions, on the other hand, execute one at a time, but the number of execution cycles 

vary with the kind of instruction. Memory and arithmetic instructions can also proceed 

in parallel, requiring that memory and arithmetic control remain essentially independent. 

Furthermore, all FPU instructions may be suspended or killed during execution, to 

prevent the FPU from going into an inconsistent state if a trap occurs. 



Chapter 6 

Suspend 

Memory Memory 

I Mem Ops Control Datapath 

Instruction Bus 
Instruction Trap 

Decoder 
New-Instruction 

I Arith Ops Arithmetic Arithmetic 

Busy Control Data path 

Figure 6.1. Conceptual setup of the control unit. The instruction decoder decides to alert the 
memory control unit if the instruction received is a load or store; the arithmetic control unit is 
activated if an arithmetic instruction is received. 

116 

An alternative view of the control unit, closer to the physical implementation, is that 

it consists of two levels. The first level is the central control unit -- containing the 

instruction decoder, memory and arithmetic control-- which generates a small number of 

primary control signals. The second level takes the control signals from the first level 

and transforms them with relatively simple combinational logic into a form directly 

usable for the control of all datapath components. Most commonly gated signals at the 

second level are the different clock phases. This view of control is shown in Figure 6.2. 

6.2. The Instruction Decoder 

This unit monitors the coprocessor instruction bus and the fpu _ Newlnstr signal to 

determine when a valid FPU instruction has been issued. Once an instruction is 

accepted, it is decoded using the Instruction PLA, and sent to the appropriate control unit. 



Chapter 6 

I 
N 
s 
T 
R 
u 
c 
T 

b 
N 

R 
s 
u 
s 
p 
E 
N 
D 

phil-phi 

I 
N 
s 
T 
R 
u 
c 
T 

b 
N 

Load-Store Control 

LOAD/STORE PIPELINE 

Arithmetic Control 

CYCLE 

COUNT 

Second-Level Control 

(Combinational Logic and Control Line ButTers) 

Front-end, Exponent, Sign, Type, Add/Subtract & Multiply/Divide Datapaths 

Figure 6.2. Two levels of Control. The first level of control mostly consists of outputs of the 
load-store pipeline and control PLAs, while the second level of control transforms them for 
use directly in the datapaths. Since the outputs of the second level of control must drive vary­
ing amounts of control iine capacitance, the outputs must be suitably buffered to meet perfor­
mance targets as well as minimize skew (the differential delay between multiple paths of the 
same signal). 

117 

If the special Trap opcode is detected, both control units are notified. How this special 

opcode affects the arithmetic state machine will be discussed in Section 6.3.1, and is 

shown in Figure 6.4. In all other cases, for example if the coprocessor is suspended or a 

non-FPU opcode is detected, this unit takes no action. 

The instruction decoder latches in the instruction bus in phi 3 and evaluates in phi 4. 

Memory and arithmetic control evaluate in phi 1 of the first execution cycle, and provide 



Chapter 6 118 

all control signals from phi 2 on; the instruction decoder directly provides the datapath 

with the signals needed in phi 1 of the first execution cycle. 

The inputs of the instruction decoder are the outputs of latches holding the opcode 

pins; these latches are in turn enabled by the fpuNewl nstr signal. The instruction decode 

is done using a pseudo-static PLA, evaluating in phi 4. Two vectors of decoded opcode 

signals are generated, one for memory and the other for arithmetic operations. A 

memory operation is initiated only if the FPU is not suspended (fpuSuspend disasserted); 

an arithmetic operation begins if the arithmetic unit is not busy (fpuBusy disasserted). 

In addition to initializing the memory and arithmetic control units, the instruction 

decoder unit controls the reading of the register file at the beginning of an arithmetic 

operation. Since the register file is read in phi 1 of the first execution cycle, the decoder 

unit must send the proper register specifiers to the register file in phi 4 of the fetch cycle. 

Rather than inhibiting the register read, the arithmetic control unit disconnects the 

register file busses from the internal data busses if the arithmetic datapath is busy. 

6.3. Load-Store Control 

Load and Store instructions can be issued once per machine cycle, and so the 

memory control unit may receive input from the instruction decoder on every cycle. 

These memory operations are considered to be part of the CPU pipeline, and the CPU 

does the address computation for these instructions. The clock phases in which the FPU 

does a Load or a Store are the same as for the CPU, so that the memory controller need 

not distinguish between memory accesses for these two processors. 



Chapter 6 119 

Since an individual memory operation completes in four cycles, a four-stage 

pipeline is necessary to allow a memory operation to be issued every cycle. These four 

stages are successively called Decode, Execute, Memory and Write, and is shown in 

Figure 6.3. 

from Instruction PLA from Instruction Latch ,-- A~-------~ 
i 1 1 1 1 1 1 1 1 l Jl 

texiJ;textl stsgl stdbl storeldcxtldextlldsgllddblload RD<0:3> 

fpuNewlnstr* - clear DECODE STAGE latch - PID4 

14~ 
~v llV 
0 

MUX 1 
sclectr- - ctrl-fpuSuscond 

.J!t 

~clear EXECUTE STAGE 
latchl- -MASTER PIDl 

II 
~v 

clear EXECUTE STAGE latch~ i-SLAVE PID2 
II 

wK ~It 

I 0 MUX 1 
sclectl- I-ctrl-fpuS uscond 

~lt 

ctrl-TrapRecvd 
I MEMORYSTAGE 
clear MASTER late+- i-Pffil 

II 

J~ 

I MEMORY STAGE 
•clear SLAVE latch~ r- PHI2 

IL 
j~ 

ctrl-fpuSuscond 
)-----,_ 

+lear WRITE STAGE latch PIDl 

Jl 
MEMORY CONTROL LOGIC 

Figure 6.3. The Load-Store Pipeline. Decode, execute, memory and write stages are shown, 
with the second and third stages consisting of master-slave latches. When the pipeline is 
suspended, say on a cache miss, information recirculates from slave to master instead of mov­
ing forward, provided the instruction has not reached the write stage. 



Chapter 6 120 

Each stage is active for exactly one machine cycle, and contains decoded opcode 

information and the internal register specifiers. The pipeline is stalled when a Suspend 

signal is detected, and it is cleared when a Trap instruction is decoded. 

Since fpuSuspend arrives in phi 4 of a given cycle, the opcode pipeline cannot 

change until the next phi 1. Master-slave latches are used to hold the pipeline stages, the 

master latches are latched in phi 1, and the transition from master to slave occurs in phi 

2. Since control signals that depend on the slave will not be stable until the next phase, 

the slave latches provide signals needed for phases 3, 4 and the 1 of the next cycle; the 

master latches only provide signals needed in phi 2. The feedback from slave to master 

in the execute and memory cycles allows these stages to be repeated on a cache miss on 

either CPU or FPU memory operations. 

The CPU computes the addresses for all FPU memory operations, and data is 

latched onto the FPU in phi 3 of the third or memory cycle on a LOAD. If a cache miss 

occurs, the fpuSuspend signal recirculates the information in the memory stage of the 

pipeline, and clear the write stage of the pipeline. On a STORE, data is sent out in phi 1 

of the memory cycle, and held until a cache hit is indicated. The control signals for 

driving the data pads in this case are derived from the second or 'execute' stage of the 

pipeline, and this stage recirculates if there is need for pipeline suspension. 

6.4. Arithmetic Control 

While the Load-Store control unit handles multiple instructions of fixed execution 

time, the arithmetic control unit handles single instructions of varying execution time. 

For example, an ADD takes 3 cycles while a DIVIDE takes 21 cycles. There is a 



Chapter 6 121 

supervisory state machine that handles suspend and trap conditions, and a 5-bit cycle 

counter does the sequencing. This division of responsibilites leads to a simpler unit with 

greater flexibility. The state machine can continue to take inputs from the instruction 

decoder without interfering with the operation of the datapath; this in turn allows the 

write cycle of the current instruction to overlap with the decoding of the next instruction. 

Again, arithmetic instructions can continue execution even when the FPU is suspended, 

since the cycle counter is allowed to continue and the state machine only has to inhibit 

the result write. 

Both the state machine and the cycle counter begin operation from the first 

execution cycle of an arithmetic instruction. The cycle counter controls the datapath 

directly, throughout the execution of the instruction, and signals the state machine when 

all results have arrived at the destination latches. The state machine, in turn, monitors 

the trap and suspend signals during instruction execution, while controlling the writing of 

the result back to the register file, as well as the fpuBusy line. If the instruction 

completes gracefully or is trapped, the state machine resets the cycle counter. 

6.4.1. The State Machine 

The arithmetic state machine is implemented using eight states. Since the execution 

of an FPU instruction continues during suspension, an instruction may complete before 

the CPU instruction has proceeded two cycles. Because of this, separate states are 

required to sequence through the first two non-suspended execute cycles, since all 

instructions may be trapped during this period. In addition, an extra 'early wait' state is 

needed for those instructions that are suspended just after the fetch cycle. The state 



Chapter 6 

transition diagram is shown in Figure 6.4. 

Figure 6.4. Arithmetic control state transition diagram. The transition vector consists of three 
bits: <ctrl-start-arithop, ctrl-fpuSuspend, ctrl-STOP>. Also note that the signal ctr/-TrapRecvd 
overrides the transition vector. 

122 

After the first two execute cycles have completed, non-suspended instructions will 

always complete and write the result without trapping. These instructions move to the 

'safe' state or directly to the 'write' state if they have already completed. Suspended 

instructions must remain in a trappable state until the pipeline is no longer suspended. A 

'wait' state is necessary for instructions completing during pipeline suspension, to shut 

off the cycle counter immediately upon instruction completion. 

Note that the machine can go from the write cycle either to the inactive state or 

directly to the first execute cycle. This allows the overlapping of the write cycle with the 

next fetch cycle. 



Chapter 6 123 

6.4.2. The Cycle Counter 

The maximum number of cycles, 22, is required by a DIVIDE instruction, and so a 

5-bit counter is adequate as a sequencer. Figure 6.5 shows the setup for the sequencer. 

ctrl-fpuBusy 
ctrl-start-arithop 

ctrl-fpuSuscond * 

pass me 

PASS INCREMENT 

GATE LOGIC 

PHI3 
ctrl-cycleclock -clearcond 

PHil 

latch 

MASTER 

LATCH 

clear 

PHIZ 

latch 

SLAVE 

cleclock<4:0> 

LATCH 

cycleclock-init<4:0> 

Figure 6.5. Arithmetic Control Sequencer. Every phil, the cycle counter is incremented, and 
the new value is passed from master to slave in phi2. Control signals active in phi3, phi4 and 
phil are derived from the slave, while only those control signals active in phi2 are derived 
from the master. 

The sequencer consists of a 5-bit incrementer, together with master and slave 

latches. The incrementer output is clocked into the master in phi 1, and transferred to the 

slave in phi 2. In phi 3, the current cycle value in the master is passed through to the 

incrementer to be updated. Thus the phi 3 pass gates prevent any possible race 

conditions, and guarantees a single increment every cycle. The increment occurs only if 

the FPU is busy and is currently not suspended; otherwise the master latch gets back its 

previous value. 



Chapter 6 124 

The incrementer is implemented using an alternating set of true and complement 

logic, as shown in Figure 6.6. The carry propagates through four stages of inverting 

logic, each stage alternately producing carry and carry*. This configuration turns out to 

be small and fast, with special attention to the device sizing of the series NAND and 

NOR gates. 

AO* Al A2* A3 A4* 

C3 

v v v 
I I I 

so Sl S2 S3 S4 

Figure 6.6. Jncrementer Circuit Schematic. A<4:0> is the previous value of the incrementer, 
and depending on the increment condition, CO*, S<4:0> gets the incremented value. C<4: 1> 
are the intermediate carry signals. 

6.4.3. PLA Partitioning 

Three PLAs -- the instruction PLA, the state machine PLA and the arithmetic PLA 

-- form the core of the control unit. Each PLA has a set of pass gates associated with it, 

so that even though the PLAs themselves are built with pseudo-static logic, the outputs 

will only change in the phase the inputs change. The PLAs are partitioned in such a way 

that each is small and fast enough to evaluate within a single phase, and so the outputs 

are guaranteed to be stable and valid before the end of the evaluation phase. The outputs 

. of the PLAs are generated independent of clock phase, to minimize effects of clock skew, 

and clocks are gated in appropriately, in the second level control, near the datapath block 



Chapter 6 125 

that needs it. 

The size and speed of each PLA is listed in Table 6.1. Given that the PLAs must 

evaluate in one phase time or 20ns, the slowest PLA takes no more than 11.4ns, allowing 

enough margin for second level control logic delay. 

Table 6.1: Area-Time Comparison of Control PLAs 
PLA Inputs Outputs P-tenns Area (sq. J.l.In) Delay (ns) 

Instruction 7 25 20 142746 11.1 
State Machine 7 8 22 70282 11.4 
Arithmetic 18 19 25 180675 10.3 

The key to the partitioning of the PLAs is that they all exhibit about the same delay. 

Consequently, there is also an advantage in area, even taking into account the area 

needed for the input and output buffers. It is estimated that if only one PLA was used, it 

would require about five times the area, and would be slower by 25%. 

6.5. Clock Generation, Distribution and Skew 

The clock generator consists of a self-calibrating tapped delay line which generates 

four non-overlapping clock phases [Jeon87]. A charge pump PLL (Phase Locked Loop) 

calibrates the delay per stage of the delay line. Using this technique, it is possible to 

obtain an accurate phase relationship between the off-chip reference clock and the 

internal clock signals. Experimental results show that required timing relations can be 

obtained with less than 2ns clock skew for clock frequencies from lMHz to 18MHz. 

In this design, by taking advantage of the extremely accurate phase tracking 

capability of charge pump PLL 's, an edge of the internal clock is accurately aligned to an 

edge of the external clock. This is accomplished by directly comparing the two phases 

through a sequential phase/frequency detector. Correct synchronization between chips is 



Chapter 6 126 

achieved regardless of the above-mentioned variations. All the sensitive circuit elements 

including clock buffers are within a negative feedback loop and the effect of the 

variations is tracked and removed by the PLL. The VCO (Voltage Controlled Oscillator) 

is composed of a multi-stage tapped delay line that is automatically calibrated to a 

precise delay per stage. The generation of arbitrary multi-phase clocks is possible with 

proper decoding of the signals from the delay line taps. 

It is not enough to generate a good four-phase non-overlapping clock, though, since 

the clock phases have to be distributed, retaining proper non-overlap margins, and 

control signals derived from these clock phases need to have the proper high-low 

transition rates and also be free of skew. The choice of data path and second level control 

design styles directly interacts with issues of clock distribution and skew, and these 

issues will be addressed next. 

Fully complimentary static CMOS design for second level control has the 

advantages of good noise margin, no charge redistribution, and no de power 

consumption, at the expense of greater area. Figure 6.7 shows the circuit for a multi­

input and-or gate in static CMOS. 

Another implementation option is to use pseudo-static CMOS circuits, as shown in 

Figure 6.8. This design style takes less area than the fully static CMOS design, but 

requires some DC power, and the devices have to be ratioed properly to achieve proper 

noise margins. 

A design example is shown for the circuit in Figure 6.8. First, the logic low voltage, 

V01 has to be picked, ensuring sufficient noise margin. The logic threshold of a 

subsequent stage is found to be 0.75v, and so V01 is chosen to be 0.5v, leaving a noise 



Chapter 6 127 

Vdd 

ABC+DEF 

GND 

Figure 6.7. Arui-Or gate in fully complimentary static CMOS. There are 16 transistors, half of 
which are P channel and the other half N channel. Each input goes to a P and an N channel 
transistor. 

margin of 0.25v. Now the equivalent width of the pull-down transistor string has to be 

found, that will be strong enough to pull the pre charged node V z down below V01 , to 

avoid accidentally triggering the next stage. The bigger the P channel device, the more 

current it will source, the more power it will consume, and the harder it will be for the n-

channel devices to overcome it to pull the node down towards ground. No matter how 

many and strings are present at node Vz, the worst case is where only one of them is 

turned on (assuming all and branches have equivalent n-channel widths), thus giving less 

current to ground than the case where two or more branches are turned on. This 

assumption gives a conservative estimate for the actual size needed, as some leakage will 

occur among the off branches thus helping to lower the node voltage. For this case, we 

can solve for the steady-state voltage at the pre-charged node using the fact that the 



Chapter 6 

Vdd 

_r l~ 
Vx ABC+DEF GND 

A~ ~D 

l~ ~l 
GND 

B~ ~E 

c~ ~F 
GND 

Figure 6.8. And-Or gate in pseudo-static CMOS. There are 9 transistors, with only two of them 
P channel and the rest N channel. Each input goes to one N channel transistor. 

128 

source (pull-up) current is equal to the sink (pull-down) current. The calculation proceeds 

as follows: 

PMOS: Vgs = -5 V; Vr = -G.75 V; Vas= Vx-5 

Vgs- Vr = -4.25 V. (Assume Vx < 0.75 V.) 

Therefore, V"" < -4.25 V. (The transistor is saturated.) 

Assume that for a string of n-channel gates, the equivalent W !L ratio for the string 

is the individual ratio divided by the number of input gates in the string. 

NMOS: V8s = 5V; Vr = 0.75V; V ds = Vx 



Chapter 6 129 

Vgs-Vr = 4.25V. (AssumeV., < 0.75V.) 

Therefore, V"' < Vgs-Vr. (The transistor is linear.) 

Setting these currents equal, and setting Vx=0.5 V: 

2
; ~ (-4.25)2 = 

7
2
6 ~II [2(4.25)(0.5)-(0.5)2

] 

wp 152 
w,. = 243.8 = 0•623 

Therefore, if WP is minimum s1ze (4A.), then w,. must be approximately 6.42A.. 

Solving the quadratic equation for v. given WP = 4 and w,. = 6 gives us vz = 0.54V. This 

still leaves a noise margin of 0.21 v. 

Table 2 presents a comparison of these two design styles, for a variety of logic 

gates. All gates have identical non-inverting buffers, driving a datapath load capacitance 

of 3.0pF. In all cases, the top cell (and-or structure) is the pseudo-static implementation, 

and the bottom cell (nand-nand structure) is the full-complementary static 

implementation. As shown in the following section, these two implementations can be 

shown to be functionally equivalent through repeated application of DeMorgan's 

theorems. 

The fourth and fifth columns show the noise margin characteristics of the cells. As 

expected from a full CMOS implementation, the static style obtained full restoration of 

the voltage levels. The pseudo-static circuit low voltage slightly less than the 0.5V 

threshold limit. The high voltage indicates some charge sharing, though the amount also 



Chapter 6 130 

Table 6.2. Comvarison of Pseudo-static Versus Full Static CMOS 
Function Devices H (/...) w (/...) v~.- (V) VH.. (V) tp. (ns) tp., (ns) 

2andlor 5 63 28 0.42 4.90 4.5 6.0 
2nand1nand 4 147 24 0.00 5.00 5.0 5.0 
2and2or 7 63 43 0.42 4.93 5.0 6.0 
2nand2nand 12 147 48 0.00 5.00 5.5 5.5 
2and3or 9 63 46 0.42 4.83 5.0 6.5 
2nand3nand 18 147 72 0.00 5.00 6.0 6.0 
2and4or 11 63 60 0.42 4.70 5.0 7.5 
2nand4nand 24 147 96 0.00 5.00 6.5 6.0 
2and5or 13 63 74 0.42 4.66 5.0 7.5 
2nand5nand 30 147 120 0.00 5.00 7.0 6.0 
3and2or 9 63 48 0.47 4.70 5.0 7.0 
3nand2nand 16 147 64 0.00 5.00 6.5 5.5 

remains within the 0.5V specified safety threshold. 

Propagation delay times are given in the final two columns. All times are 

comparable, with static low-to-high (rise) times usually slower and high-to-low (fall) 

times usually faster than the pseudo-static times. The pseudo-static fall times will always 

increase with the addition of and strings, as there is essentially a limited supply of current 

available through the minimum-size p-channel source and an increasing amount of 

capacitance to charge. The rise times are dependent on the width of the n-channel sinks, 

which could be increased with a small area penalty. However, they cannot be decreased 

without upsetting the ratio balance, so it is difficult to reduce skews at this level by 

balancing the rise and fall times. The static cells are designed with a 2:1 p-channel to n-

channel ratio in order to provide automatic balancing of the rise and fall times. As seen, 

a better natural balance could possibly be obtained by increasing this ratio towards 2.5:1 

(this is dependent on the mobilities of the p- and n-type materials, which is a processing 

parameter). 



Chapter 6 131 

To allow an even greater noise margin, specifying a safety threshold of 0.25V 

would have involved increasing the n-channel sizes such that a ratio of 12.44:4 is 

maintained between the n-channel width and the minimum-size p-channel width. 

However, this would also have served to increase the charge-sharing problem, as 

increasing the n-channel width increases the amount of capacitance in the and strings 

available for charge sharing. This could then be alleviated by increasing the size of the 

pre-charge node, possibly by increasing the size of the output inverter associated with 

this implementation and thus increasing its input gate capacitance. However, this also 

has its penalty, as increasing the size of the pre-charge node increases the circuit delay. 

Much more detailed circuit simulation becomes necessary to guarantee proper operation 

of the pseudo-static scheme for different circuit configurations, thus requiring 

significantly more design time. 

The third control implementation option to be considered is dynamic CMOS 

[Kram82] [Gonc83] [Lee86]. While the previous two design styles did not require any 

clocking, dynamic techniques do require at least one clock signal. The scheme 

essentially consists in precharging a node, and then conditionally discharging it 

depending on the inputs. There are two main problems with dynamic design -- charge 

redistribution and clock skew. Charge redistribution occurs when the charge on the 

output node is transferred to some of the internal nodes of the circuit [Pret86]. For the 

circuit to work, a reduced 'high' level on the precharge node should still be higher than 

the logic threshold of the output inverter. This is illustrated in Figure 6.9. 

The second problem with dynamic circuits is clock skew [Oklo85]. Even though 

two logic blocks get the same clock signal, physically the clock signals can be different if 



Chapter 6 

I~ 

Figure 6.9. Charge redistribution in dynamic circuits. When phi is low, the precharge node Vx 
is high, and capacitor Cl is charged high. When phi goes high, Cl loses some of this charge to 
the parasitic capacitor C2. 

132 

they have not gone through exactly the same delays [Lin84]. This can lead to undesired 

latching of a wrong result, as illustrated in Figure 6.10. 

Phases 1 and 2 need to be non-overlapping so that there is no feed-through between 

the two latches, but that is not sufficient. If the phi2 that controls the latch arrives later 

than the phi2 that enables the dynamic combinational logic, it is possible that the phi2 

latch could latch the precharge value instead of the evaluated value. This delay or skew 

between phi2 that goes to the logic and the phi2 that goes to the latch can and does vary 

because of the different capacitive loads on the clock lines going to the logic and the 

latch. 

We protect against clock skew by limiting the total amount of allowable clock skew 

[Shoj86]. The control line buffers that drive the different datapath control lines are sized 

individually according to their capacitive loads; bigger buffers drive more capacitive 



Chapter 6 

phil phi2 (logic) phi2 (latch) 

L L 

A A 

Dynamic 

T T 

c Logic c 

H H 

phil __j precharge I evaluate ._l __ _ 

I ' 
non~v~rlap 

phi2 1! i-e..:v_al-ua_te..,l precharge r-
----------~~1 : 

(logic) ~ +--. ! 

Phi2 

~. *-- ~ )Ytch precharge value! 

--------~i :\_ r-
(latch) ++ s~+ 

Figure 6.10. The problem with clock skew. A typical logic block consists of some dynamic 
combinational logic between two latches, clocked at phil and phi2 respectively. The dynamic 
logic needs to be evaluated at phi2. 

lines, so that differential delay between 'identical' transitions is minimized. 

133 

We limited total clock skew to 4 nanoseconds, or 20% of a phase time. Figure 6.11 

is a histogram showing the variation of clock skew for all control lines on the FPU. 



Chapter 6 

30 

#of ..---
r--

clock 20 
- r--

-
r--

r--
edges 

10 
-

n 
-4 -3 -2 -1 0 +1 +2 +3 +4 

(nanoseconds from primary clock) 

Figure 6.11. Distribution of control line clock skew. The differential delay of all control lines 
on the FPU are measured with respect to their primary clock phases, and the histogram plotted. 
The peak at 0 indicates all the clocks needed in only one polarity. The other bars represent the 
number of clock signals that either arrive earlier (left of 0 on X-axis) or later (right of 0 on X­
axis) because of fewer or more buffers. 

134 

Since the FPU fraction datapath varies in width from 64 for add/subtract to 75 for 

multiply/divide, there is a wide disparity in load capacitances, making the problem of 

clock skew even more severe. We designed a large number of datapath blocks using 

dynamic circuits because of severe area constraints; if more area can be afforded, design 

time can be significantly reduced and the design made more rugged by going to static 

designs whenever possible. 



Chapter 6 135 

6.6. Summary 

The design of the components of the SPUR FPU control unit are presented first in 

this chapter, to form a basis for discussion of major performance limiting factors. 

Instruction decoding, a pipeline for Load and Store operations, and the arithmetic control 

unit, including the state machine and the cycle counter are discussed. 

The basis for partitioning control into separate PLAs is discussed next. Here again, 

area-time tradeoffs have to be investigated to determine the optimum mix of inputs and 

outputs between different PLAs. In the case of SPUR, the central control was partitioned 

into three PLAs with delays within 10% of each other and all less than one phase time, so 

that control logic close to the datapath -- the second level of control -- had time to 

complete evaluation within the allotted phase. 

Circuit design options for control circuits are discussed next. Two static schemes 

are compared for area, delay, and noise margin, for a variety of gates. Full static CMOS 

provides a greater speed advantage than the pseudo-static design at the cost of extra area, 

but is a safer design, because of its higher noise immunity, and has the added advantage 

of not requiring any DC power. The impact of datapath design styles on control unit 

design is explored. 

Two of the main problems of dynamic circuit design -- charge redistribution and 

clock skew -- are investigated next. Both problems, especially clock skew, could 

potentially limit performance improvements with scaling technology. Ways of 

minimizing clock skew are presented, and careful sizing of control line buffers to match 

control line capacitance is shown to limit differential clock delays to within a small 

percentage of processor cycle time. 



....... '-""''. 

Chapter 6 136 

Jensen [Jens87] helped with the layout and circuit simulation of some control 

components. 



Chapter 6 137 

6.7. References 

[Gonc83] N. Goncalves and H. DeMan, NORA: A Racefree Dynamic CMOS 
Technique for Pipelined Logic Structures, IEEE Journal of Solid-State 
Circuits, Vol. SC-18, No.3 (June 1983), pp. 261-266. 

[Jens87] D. Jensen, Control Implementation for the SPUR Floating Point 
Coprocessor, Computer Science Division (EECS) Report No. UCB/CSD 
87/369, University of California, Berkeley (August 24, 1987). 

[Jeon87] D. Jeong, G. Borriello, D. A. Hodges and R. H. Katz, Design of PLL-Based 
Clock Generation Circuits, IEEE Journal of Solid-State Circuits, Vol. SC-
22, No.2 (April1987), pp. 255-261. 

[Kram82] R. Krambeck, C. Lee and H. Law, High-Speed Compact Circuits with 
CMOS, IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 3 (June 
1982), pp. 614-619. 

[Lee86] C. M. Lee and E. W. Szeto, Zipper CMOS, IEEE Circuits and Devices(May 
1986), pp. 10-17. 

[Lin84] T. Lin and C. Mead, Signal Delay in General RC Networks, IEEE 
Transactions on CAD of Integrated Circuits and Systems, Vol. CAD-3, No.4 
(October 1984), pp. 331-349. 

[Oklo85] V. J. Oklobdzija and R. K. Montoye, Design-Performance Trade-offs in 
CMOS Domino Logic, Proc. IEEE Int' !. Custom !.C. Conf(May, 1985). 

[Pret86] J. A. Pretorius, A. S. Shubat and C. A. T. Salama, Charge Redistribution and 
noise margins in Domino CMOS Logic, IEEE Transactions on Circuits and 
Systems, Vol. CAS-33 (August 1986), pp. 786-793. 

[Shoj86] M. Shoji, Elimination of Process-Dependent Clock Skew in CMOS VLSI, 
IEEE Journal of Solid-State Circuits, Vol. SC-21, No. 5 (October 1986), pp. 
875-880. 



7 Implications of 
Scaling Technology 

138 

This chapter discusses the effects of technology scaling on floating-point 

computation. Perhaps the single most dominant factor in the performance improvement 

of processors in recent years has been the evolution of technology towards finer 

geometries. This trend has shown no sign of diminishing, and is expected to continue at 

around this rate, for about the next ten years. This has allowed the individual transistors 

to get faster and smaller, with more transistors fitting on a single chip, which itself is also 

getting larger. This trend has continued unabated since the early 1970's, with minimum 

line-widths decreasing from around eight microns in 1972 to around one micron in 1988 . 

. Chip sizes have gone up from 10 sq.mm. to 100 sq.mm., and the number of transistors 



Chapter 7 139 

from 1,000 to 250,000 for processors and 10,000 to 4 million for memories [Myer86] 

[Asai86]. The effects of scaling are pervasive across all levels of processor design, and 

we shall look at all of them in turn, from devices and circuits, through logic and micro-

architecture, to algorithms and system architecture. 

7.1. Scaling at the Device/Circuit Level 

Classical, or constant-field scaling, [Denn74] attempts to scale all dimensions of a 

technology, all device voltages, and all concentration densities by the same factor a. The 

effect of this scaling on device and circuit parameters is shown in Table 7 .1. 

Table 7.1: Effect of classical scalin on device and circuit parameters. 
Device Parameters Circuit Parameters 

Parameter Scale Factor Parameter Scale Factor 
Length, Width 1/a Parasitic Capacitance 1/a 
Gate Oxide Thickness 1/a Gate Area l/a2 

Supply Voltage 1/a Gate Delay 1/a 
Junction Depth 1/a Power Dissipation l/a2 

Depletion Layer 1/a Power-Delay Product 1/a3 

Substrate Doping a Current Density a 

As device parameters are scaled by a constant factor a, circuit area, delay and power-delay 
product increase significantly. Note that substrate doping and current density increase with 
scaling, ultimately becoming some of the limiting factors. 

We see that reducing the feature size by a causes area to decrease by the square of 

a and the speed to increase by the same factor. But scaling cannot go on indefinitely, 

and junction and oxide breakdown at high electric fields limit the extent of scaling. 

Again, the problem of increasing sub-threshold conduction makes it difficult to reduce 

transistor threshold voltages much below 0.6 volt. This militates against the 

proportionate scaling of the power supply voltage, leading to a slower decrease in the 

power supply voltage compared to the decrease in line widths. When scaling with 



Chapter7 140 

constant power supply voltage, the gate delays decrease by the square of a (instead of a 

for classical scaling), but the power dissipation increases by a, leading to power-delay 

product that decreases at the rate of 1/a, which is less dramatic than that for classical 

scaling. 

Deviations from classical scaling have to be made in several instances, as we 

approach sub-micron dimensions [Labo82] [Take85]. One such case is that of 

interconnect resistance. With classical scaling, the delay time of local interconnects 

remains the same since line resistance increases by a, while line capacitance decreases 

by a, keeping the RC delay constant. The delay for long interconnects actually 

increases, while the delay time of transistors decreases by a. One way to keep 

interconnect resistances small is to scale down interconnect thicknesses at a rate smaller 

than a. Interconnect density, though, has improved rapidly over the last few years, with 

reductions in metal and polysilicon pitch, and the availability of second and third metal 

layers. This should help solve some of the communication bottlenecks when multiple 

sub-systems are integrated on the same chip. 

Other concerns at sub-micron device sizes include mobility degradation, increased 

susceptibility to latch-up, increased leakage current, reduced noise immunity, increased 

power dissipation at higher frequencies, and an increase in the ratio of wiring capacitance 

to device capacitance. 

Mobility degradation will not allow speed improvements to continue at the rate 

predicted by classical scaling. Even with constant electric fields within the transistor, 

intrinsic material properties will limit performance enhancement, limiting gains in device 

transconductance and hence speed. Other short-channel effects like drain-induced barrier 



Chapter 7 141 

lowering will also ultimately limit scaling [Pfie85]. Increased sub-threshold leakage 

currents, together with decrease in device and interconnect capacitance, will determine 

the scaling limits of dynamic CMOS circuits, while static CMOS circuits will be limited 

by noise immunity degradation caused by short-channel effects. 

7 .2. Scaling at the LogidMicro-architectural Level 

The principal challenge at this level will be the design and implementation of clock 

distribution systems [Ance82] [Frie86]. At sub-micron geometries, it is conceivable that 

there will be several million transistors on a single chip, and ensuring proper 

synchronization between different parts of the chip will require significant effort. 

One of the approaches that can be extrapolated down from multi-board-level design 

is the notion of independent modules on a single chip, interconnected by a synchronous 

communication mechanism. This avoids a key problem of the self-timed approach, 

where there is no unique time reference; also, the same clocking design philosophy used 

in the design of individual circuits and sub-modules, can be extended to the entire chip. 

Different modules within the chip, each possibly containing 100,000 transistors, 

could be considered isochronic: that is, they would have an identical time reference 

throughout the region of the module, much like an equipotential region, as shown in 

Figure 7.1. 

Once the entire chip is partitioned into separate isochronic regions, the individual 

module clocks will have to be synchronized to the master clock generator. This can be 

done using phase-locked-loops (PLLs), as shown in Figure 7.2. 



Chapter7 

!Or-----------------------------------~ mm 

5 

0 5 !Omm 

Figure 7.1. Isochronic Regions on a Single VLSI Chip. The size of each region depends on the 
circuit density and capacitive loading on clock lines. Each isochronic region, e.g. multiplier 
array or high-radix divider, is driven by its own clock, with maximum clock skew in an entire 
region held below some fraction of the clock period. 

r_ o 1 
Oock Broadcast Oock 

Gen. 

'itp 
Divide 

Module Module byN Module 
Oock 

Communication l I T 
Oock 

Communication Bus 

Figure 7.2. Clock Distribution between Modules. Communication between modules is syn­
chronized to the communication clock, which is derived from the crystal clock generator. 
Since driver and wire delays are there in each module, the communication clock can be slower 
than the broadcast clock. 

142 



Chapter 7 143 

We have seen how classical scaling can lead to proportionate increase in wire delay 

-- while gate delay decreases, wire delay remains constant -- but even if interconnect 

scaling occurs at a slower rate than gate lengths, communication delay will be 

increasingly important in determining total delay. Meta-stability may be avoided by 

maintaining correct phase relationship between the communication clock and the 

broadcast clock. Phase-locked-loops (PLLs) are needed in each module, to ensure 

synchronization between each internal module clock and the communication clock, to 

maintain a synchronous communication interface between modules. The PLLs need not 

be very accurate, as long as they are able to compensate for process variations and 

temperature effects on propagation delay. 

7.3. Scaling and Arithmetic Algorithms 

Further enhancements in algorithm performance will come from two inter-related 

factors. First, as technology continues to scale to smaller geometries, individual 

transistors and logic gates will improve in performance. Second, for the same total chip 

area, scaling will also allow more logic on a single chip. This will allow designers to go 

to faster algorithms and get even greater speed-up than that achievable by simply scaling 

technology. Figure 7.3 shows the effect of scaling a floating-point unit from 2 microns to 

1 micron and 0.5 micron, leading to about a 400% increase in device density at 1 micron. 

For addition and subtraction, individual components of the datapath, like the adder 

and shifter, will speed up as technology scales. An optimization can be added to the 

add/subtract datapath to distinguish between two mutually exclusive cases: a long 

alignment right shift and a long normalizing left shift to the fraction. Normalizing 



Chapter 7 

10~----------------------------~ mm 

5 

0 5 !Omm 

Figure 7.3. Impact of scaling the FPU from 2J.L to 05J.L. The FPU, as presently designed, is re­
duced to approximately a fourth its present size when the technology scales from two to 1 mi­
cron, and to about 6% its present size at 0.5 micron, freeing up 75% to 94% of the chip area at 
lJ.l. and 0.5J.L respectively. 

144 

implies possibly long left shifts of the intermediate result, while rounding implies that the 

intermediate result gets no shift at all or at most a shift of one bit right or left, depending 

on whether the number is greater or less than unity. Of course it is quite possible that 

neither a long right shift or a long left shift are necessary. The mutually exclusive long-

shift conditions can be summarized as follows: 

If 0~ R-Shift ~;;],then 

a) when normalizing, :Q L-Shift ~63 or 

b) when rounding, L-Shift ~1 

If ~2 R-Shift ~67, then 

definitely going to round, and L-Shift ~1 



Chapter 7 145 

It turns out that if the exponent difference indicates that a long alignment right shift 

is necessary, the datapath effectively looks like a right shifter followed by an adder. On 

the other hand, if the exponents are close, the long alignment right shift is not necessary, 

and the datapath could look like an adder followed by a left shifter. It is thus possible, 

with a little extra control, to eliminate one shifter delay from the add/subtract critical 

path. 

Going from 2 micron to 1 micron technology, large combinational multipliers will 

become feasible as components in an FPU, requiring area comparable to the SPUR FPU 

multiplier, as seen in Figure 7.4. A 64 x 32 array multiplier in 1 micron technology 

should take about 60% of the area of the present multiplier area; a 64 x 64 array 

multiplier in 1 micron technology should be about the same size as the iterative SPUR 

multiplier, while providing about a lOx speed improvement. 

Dividers, being inherently sequential in nature, are harder to speed up. The 

escalating area and time cost in the quotient selection logic will probably limit the use of 

non-restoring divide to radix 16 [Tayl85]. The area needed for partial remainder 

evaluation will be virtually unaffected, but the quotient selection logic will increase from 

radix 4 by about 6 times. Prescaling schemes [Erce85], to generate more quotient bits 

per iteration, are worth exploring. Eight and even sixteen bits per iteration seem feasible, 

provided that initial setup, final remainder adjustment, and data flow can be handled 

efficiently. Figure 7.5 shows algorithmic options for divide with changing technology. 

The estimate for prescaling in Figure 7.5 takes into account two 64 x 8 multipliers, and 

the increase in datapath width by eight bits; on the other hand, quotient selection logic is 

greatly simplified. 



Chapter 7 

------------·----------------------------------··-·-----·----·--------------·-----···----···---------.. . . ! Multiply Algorithm Area-Time Cost i 
Area 

4 

Area 
0 2 micron 

~ 1 micron 

3 ·····················································-······t······+·········· 
Time 
[] 2 micron 

I 1 micron 
Area 2 f···································=-~~~~: ............................. , .......... . 

0 ~~~~~~--~~~~~--~~~~~--

Multiply Multiply Multiply 
64*8 64*32 64*64 

~--·----------·······:~~-~~---·····--·------···--~~~---·-----····------~~:. ••••••••••••••••. 1 

Figure 7.4. Multiply Algorithm Area-Time Cost. Area and time are normalized to those for our 
implementation in 2 micron CMOS. For example, our multiply scheme will be 25% its present 
size when built in 1 micron CMOS and will be 4 times as fast. 

146 

High radix prescale dividers should become feasible as technology scales from 2 

micron to 1 micron. A radix 256 prescale divider in 1 micron CMOS, occupying about 

the same area as a radix-4 SRT divider in 2 micron CMOS, could provide an order of 

magnitude speed improvement, combining the effects of faster technology and faster 

algorithms. 



Chapter 7 

-------------------·---------···-----------------------------------··-------------------·--------------- .. ' ' ' ' i Divide Algorithm Area-Time Cost i 

4 ----------------------------------------------------------------------------------

Area 
D 2 micron Area 

~ 1 micron 

3 ------------------------- ------------------------------------ ------- -----------

Time 
[l 2 micron 

I 1 micron 

2 ------------------------------------------------------------- ------- -----------

Area Time 

Divide 
SRT 
(1'24) 

Area 

Divide 
SRT 

(1'216) 

Divide 
Prescale 
(r=256) 

' 

--------------------------------------------------------------------------------------------------------

Figure 7 5. Divide Algorithm Area-Time Cost. A radix 16 divider will be 50% larger than ra­
dix 4 in 2 micron CMOS, but 38% its present size in 1 micron CMOS; the divider delay de­
creases 60% going to radix 16 in 2 micron CMOS and 80% going to 1 micron. 

7.4. Scaling and Multiple Function Units 

147 

As technology line-width scales from 2 microns to 1 micron, the present FPU 

shrinks to a fourth its size, leaving us with the obvious question of how to utilize the 

extra area. Clearly, we need to devote more area to speeding up the basic operations, like 

add, subtract, multiply and divide, as we explored in the last section. Array multipliers 

and high-radix dividers will still require more than one cycle to complete, leaving room 

for even further improvement In this section we investigate alternatives for utilizing the 



Chapter 7 148 

increased device density to achieve even higher throughput. 

Presently, most FPUs share the add/subtract fraction unit's components, including 

the shifter, adder and rounding logic, for different instructions. For higher performance 

and increased parallelism, these components could be duplicated, so that the different 

arithmetic units can be independent. Keeping these functional units independent, and 

with a multi-port on-chip register file, it should be possible to begin execution of multiple 

arithmetic operations simultaneous! y. Figure 7. 6 shows the interaction of different 

function units in such a system. 

Instr 

Control Decode 

I .___, 
Add/Subtract Unit 1 r-

~ Add/Subtract Unit 2 r--
l/0 Register Arith 
~ 

Data Control File Control 
~ Multiply Unit i4-----

~ Divide Unit ~ 

Figure 7.6. Increased parallelism with independent function units. The register file has multi­
ple ports, so that it can service all four independent functions, for add/subtract, multiply and 
divide. Two add/subtract units are shown, to balance operation frequencies (see Ch.2). In ad­
dition, the architecture remains decoupled, so that I/0 and arithmetic can proceed independent­
ly and simultaneously. 

There are several design alternatives to take advantage of parallelism between 

different function units. The individual operations may be pipelined to improve 

performance, with nominal increase in hardware. A logical sequence of pipeline stages 



Chapter 7 

for add/subtract can be the following three: 

• exponent comparison, 

• alignment right shift and add or add and normalize left shift, or 

•round. 

For iterative multiply and divide, a three-stage pipeline can be formulated: 

• generating operand multiples, Booth encoding, 

• iterations on partial products/remainders, or 

• rounding and normalization. 

149 

Since scientific computation often involves vectors, a further extension to a 

pipelined floating-point unit would be to add a vector control unit, so that it can 

independently handle vector instructions, including address calculations and memory 

references. Figure 7.7 shows how the extra area might be utilized when technology 

scales from 2 microns to 1 micron. 

One of the problems that arises with such a system is the handling of exceptions. 

This is an area of active research [Smit85] [Hwu87], and several approaches are being 

explored to ensure that exceptions or interrupts are handled properly when there is out­

of-order instruction execution. If the CPU is still responsible for exception handling, 

enough state will need to be retained by both processors, to be able to back-track to the 

state when an earlier instruction could have caused an exception. 

As floating-point units use more aggressive algorithms, become pipelined and 

handle vector instructions, the problem of keeping them supplied with operands becomes 

even more acute. Clearly, faster memory systems will be needed to service multiple, fast 



Chapter 7 

10~--------------------------------------~ 

!J. Multiply 

5 

0 5 

Add 

Vector 

Control Unit 

Regs Divide 

10mm 

Figure 7.7. Utilizing the extra area at 1 micron. Extra area is used for faster algorithms for 
multiply and divide, using array techniques and higher radix computation. Providing two mu­
tually exclusive paths for add/subtract between exponent comparison and rounding, explains 
the area marked LlAdd. Going to a register file with enough ports to service l/0 and multiple 
functional units, would require the extra area marked LlR.egs. Alternatively, going to 8 vector 
registers, with 64 operands per register (ala CRA Y) would take up 15% of the active area in 1 
micron technology. Finally, area is reserved for a control unit that could process vector in­
structions. 

150 

floating-point units. The next section discusses some system level implications that arise 

out of scaling technology, and how it could possibly mitigate the problem of increasing 

memory bus utilization. 



Chapter 7 151 

7.5. Scaling at the Architectural Level 

Recall from Chapter 3 that one of the three components of overhead in a 

coprocessor interface is the cache overhead. Cache access overhead becomes the major 

component of communication overhead with a fast FPU. The problem worsens as 

floating-point units improve in speed and optimizing compilers take advantage of 

different forms of available concurrency and generate more efficient code. A very 

aggressive, fully pipelined FPU architecture would nominally require one floating-point 

operation started each cycle. This presumes some form of DMA between the cache and 

the FPU to keep the FPU supplied with operands. The cache miss overhead will 

probably not scale with technology, getting further compounded when multiple 

processors share memory over a common bus. Figure 7. 8 shows the effects of various 

FPU operation speeds and cache service times on system saturation -- the number of 

processors that lead to 100% memory bus utilization -- for the program DP and LL5, 

kernel 5 of the Livermore Loops from Chapter 2. For the same cache miss overhead, the 

system saturates with fewer processors as FPU speed increases. As technology and 

algorithms provide us with faster floating-point execution, the requirements on the 

memory system for a shared-bus multiprocessor become even more critical. It is also 

evident from Figure 7.8 that going to a faster memory system with half the cache service 

time increases system saturation, allowing more processors to be connected to the 

system, with commensurate net speed-up [Bose88]. 

One of the ways to reduce main memory accesses may be to integrate more of the 

memory hierarchy with the processors. In the previous section, we outlined possibilities 

for faster floating-point performance going from two micron technology to one micron 



Chapter 7 

1:·:.-------Eii~~~-~£-f;Fu-s~ct~~~-~ct--Mi~-~-o~~;h~~ct-~~-s-;~~~~-s-~~~~i~~-r;~i~~------···\ 

Mias Overhead • 20 cycles 
50.0 I 

10.0 

Miss Overhead • 10 cycles 
I 

I 
I 

---DP 

RELATIVE - - - - LL5 

FPU 

SPEED-UP 

1.0 

' ' 0.1 __________ _... _______ _ 

2 5 10 20 40 

SYSTEM SATURATION POINT 
' . ~-------------------------------····---------····---------·-·---------·-·------·---------------------------·----·----------------·---····--·-----·J 

Figure 7.8. Impact of execution speed-up and cache miss overhead on system saturation for 
DP (dot product) and IL5 (Livermore Loop #5). An execution unit that is 10 times faster 
causes system saturation with 33% fewer processors. For the same execution speed, reducing 
cache miss overhead by a factor of 2 allows the number of processors in the system to increase 
by 67% before saturation occurs. 

152 

technology. As we scale to half micron technology, still far away from reaching scaling 

limits (around 0.1~--L), let us see what are some of the possibilities that arise. The present 

FPU shrinks to a sixteenth its present size as technology is scaled from two microns to a 

half micron. As we include some of the enhancements suggested in the previous section, 

which takes up the entire chip area at one micron technology, it still occupies only a 

fourth of the entire area when line-widths shrink to half a micron. The area used for the 

enhancements is indicated by .1FPU. 

If we assume that the manufacturable chip size does not decrease as technology 

shrinks from 2 microns to 0.5 micron, it is interesting to speculate on how to effectively 

use the remaining 75% of the chip area at 0.5 micron. One possibility is to integrate the 



Chapter 7 153 

CPU with the FPU on the same chip. If the CPU complexity remains at the current level, 

it should reduce to a sixteenth its present size in 2 micron technology. This still leaves 

about 70% of the entire chip area free. An obvious possibility is to now move some of 

the memory hierarchy onto the chip. Even with a cache controller and input/output 

processor equivalent in complexity to the CPU (around lOOK transistors), we see in 

Figure 7.9 that around 50% of the chip area can be devoted to local cache memory. 

5 

I/0 
Processor 

Cache 
Controller 

CPU 

0 5 lOmm 

Figure 7.9. A possible system configuration at 0.5 micron technology. The area used for FPU 
enhancements is indicated by Lif'PU. Each of three chips- CPU, cache controller and I/0 pro­
cessor- can be equivalent in complexity, around 100,000 transistors. The FPU has fast, multi­
ple, independent, pipelined function units. The cache is split into two, for instruction and data. 

Splitting the cache into instruction and data portions has several advantages. Two 

caches effectively double the memory bandwidth, and is probably essential for a 

processor that has to execute an instruction every cycle. Again, since patterns of 



Chapter 7 154 

instruction and data references tend to be different, having two separate caches allows 

independent, optimal choices of each cache's design parameters. One might even want 

to split the data cache into two components, one servicing the integer CPU and the other 

servicing the vector FPU, and the same would apply to the I/0 controller. 

Extrapolating current memory cell sizes [Wada87] [Kimu87], it is conceivable that 

the instruction cache can be 32KBytes of static RAM or 96KBytes of dynamic RAM; 

and the size of the data cache can be 256KBytes of static RAM or 768KBytes of dynamic 

RAM! Using the static RAM numbers for a SPUR-like system, but with a 64-bit bus and 

sub-blocks, the miss ratio on the instruction cache could be reduced to less than 5%, and 

the miss ratio on the data cache could be reduced to less than 1% [Hi1187]. 

7 .6. Summary 

Technology scaling will continue steadily into the sub-micron region, leading to 

denser, faster, larger chips. Technology scaling limits will be determined initially by 

junction breakdown at high electric fields, and finally by quantum-mechanical tunneling, 

around 0.1 micron. Special circuit techniques will need to be developed to counter 

emerging problems with scaling, like increased power dissipation at higher frequencies, 

lower noise margins, greater sensitivity to latch-up, and increased sub-threshold leakage 

current. 

System clocking will require careful design and implementation, if we are to take 

advantage of integration in the range of 10 million transistors. Function modules, each 

with around 100,000 transistors, may need to be have local clock generators, with local 

phase-locked-loops providing the necessary tracking between modules, for synchronous 



Chapter 7 155 

communication. 

Fast algorithms and their implementation and low overhead in communication are 

both critical for high performance floating-point support in modern systems. Fast 

algorithms for arithmetic and their implementation are discussed, in light of scaling 

technology allowing higher levels of integration. It should soon be possible to integrate 

multiple, pipelined function units on a single chip, providing an order of magnitude faster 

execution with a factor of two scaling in technology. 

The consequences of increasing memory bus utilization are investigated, especially 

in light of faster floating-point processors. As floating-point computation speeds 

increase, effective memory access times must also decrease to allow utilization of the 

processors in the system. However, cache service times do not easily scale with 

technology, and may become the bottleneck of future shared-memory multiprocessor 

systems. Supporting fast scientific computation effectively with such systems may soon 

require the design emphasis to shift from arithmetic algorithms to faster memory systems 

to ensure that multiple, fast floating-point units remain compute-bound and not limited 

by the memory. As technology scales from 2 microns to 0.5 micron, it may be possible 

to integrate large instruction and data caches onto the same chip, together with integer 

and floating-point processors. 



Chapter 7 156 

7. 7. References 

[Ance82] F. Anceau, A Synchronous Approach for Clocking VLSI Systems, IEEE 
Journal of Solid-State Circuits, Vol. SC-17, No. 1 (February 1982), pp. 51-
56. 

[Asai86] S. Asai, Semiconductor Memory Trends, Proceedings of the IEEE, Vol. 74, 
No. 12 (December 1986), pp. 1623-1635. 

[Bose88] B. K. Bose, P. M. Hansen, C. Lee and D. A. Patterson, Fast Scientific 
Computation in CMOS VLSI Shared-Memory Multiprocessors, Proc. IEEE 
Int'/ Symposium on Circuits and Systems(June, 1988), pp. 811-814. 

[Denn74] R. H. Dennard, F. H. Gaensslen, L. Kuhn and H. N. Yu, Design of Ion­
Implanted MOSFETs with very small physical dimensions, IEEE Journal of 
Solid-State Circuits, Vol. SC-9, No.5 (October 1974), pp. 256-268. 

[Erce85] M. Ercegovac and T. Lang, A Division Algorithm with Prediction of 
Quotient Digits, Proc. Seventh IEEE Symposium on Computer 
Arithmetic(June 1985), pp. 51-56. 

[Frie86] E. G. Friedman and S. Powell, Design and Analysis of a Hierarchical Clock 
Distribution System for Synchronous Standard Cell/Macrocell VLSI, IEEE 
Journal of Solid-State Circuits, Vol. SC-21, No.2 (April1986), pp. 240-246. 

[Hill87] M. Hill, private communication (September 1987). 
[Hwu87] W. M. Hwu and Y. N. Patt, Checkpoint repair for High-Performance Out­

of-Order Execution Machines, IEEE Transactions on Computers, Vol. C-36, 
No. 12 (December 1987), pp. 1496-1514. 

[Kimu87] K. Kimura and K. Shimohigashi, A 65ns 4 Mbit CMOS DRAM with a 
Twisted Driveline Sense Amplifier, IEEE Journal of Solid State Circuits, 
Vol. SC-22, No.5 (October 1987), pp. 651-656. 

[Labo82] V. Laboratory, Technology and Design Challenges of MOS VLSI, IEEE 
Journal of Solid-State Circuits, Vol. SC-17, No.3 (June 1982), pp. 442-448. 

[Myer86] G. J. Myers, A. Y. C. Yu and D. L. House, Microprocessor Technology 
Trends, Proceedings of the IEEE, Vol. 74, No. 12 (December 1986), pp. 
1605-1622. 

[Pfie85] J. R. Pfiester, J. D. Shott and J. D. Meindl, Performance Limits of CMOS 
ULSI, IEEE Journal of Solid-State Circuits, Vol. SC-20, No. 1 (February 
1985), pp. 253-263. 

[Smit85] J. E. Smith and A. R. Pleszkun, Implementation of Precise Interrupts in 
Pipelined Processors, Proc. Twelfth Annual Symposium on Computer 
Architecture(June 1985), pp. 36-44. 

[Tak:e85] E. Takeda, G. A. C. Jones and H. Ahmed, Constraints on the Application of 
0.51J. MOSFETs to ULSI Systems, IEEE Journal of Solid-State Circuits, Vol. 
SC-20, No. 1 (February 1985), pp. 242-247. 

[Tayl85] G. S. Taylor, Radix 16 SRT Division Methods With Overlapped Quotient 
Selection Stages, Proc. Seventh IEEE Symposium on Computer 
Arithmetic(June 1985), pp. 64-71. 



Chapter 7 157 

[Wada87] T. Wada and T. Hirose, A 34ns 1 Mbit CMOS SRAM Using Triple 
Polysilicon, IEEE Journal of Solid State Circuits, Vol. SC-22, No. 5 
(October 1987), pp. 727-732. 



158 

8 Conclusions 

This short chapter concludes this thesis with a recapitulation of the issues addressed 

m the preceding chapters, emphasizing contributions in analysis and synthesis in the 

present work. The chapter ends with recommendations for future work, suggesting 

directions for further research that could enhance and extend the work reported here. 

8.1. Summary 

From a study of several computationally-intensive programs and program kernels 

taken from a wide variety of real-world applications, the following common 

characteristics emerge from static and dynamic measurements: 



Chapter 8 

• operands are mostly array elements, accessed in a regular arithmetic 
progression; 

• most operations are simple, with add/subtract, multiply and divide being the 
most frequent; 

• memory reads occur almost three times as often as memory writes, and the 
ratio of floating-point operations to memory references falls in a small range 
close to unity; and 
• there is scope for parallelism with floating-point operations at various levels, 
including integer computations and memory accesses. 

159 

From a comparison of several coprocessor interfaces, we find that the main 

contributors to a high performance interface are: 
• a decoupled control and execution architecture allow data transfers to 
proceed while FPU functions are performed; 
• on-chip FPU register file and a wide data path between the memory and FPU 
minimize data transfer overhead; 
• an intelligent interface control unit allows FPU instruction decoding and 
execution in parallel with CPU instruction decoding and execution for 
maximum concurrency; and 
• implicit and explicit synchronization mechanisms provide the programmer 
complete control and flexibility. 

The tradeoffs in implementing these features in hardware are discussed, and it is 

shown that the increase in control complexity stems from maintaining decoupled control 

units for memory and arithmetic operations. The datapath needs to support a wide bus --

at least 64 bits for extended precision, and requires a multi-port register file on chip to 

accommodate I/0 parallelism. 

The implications of hardware support for the IEEE standard are analyzed, and the 

basis for partitioning tasks between hardware and software explored. It is found that it is 

possible to delegate the evaluation of special functions and exception handling to 

software, and implement the rest in hardware, while still retaining high performance. 

Area versus time costs for different algorithms are compared, for the 

implementation of the basic arithmetic functions. For a floating-point unit implemented 



Chapter 8 160 

on a single chip in 21J. CMOS technology, it is found that high-radix iterative techniques 

work well for multiply, and significant hardware sharing occurs if implemented together 

with iterative radix-4 SRT divide. 

The very wide data-widths -- up to 75 bits -- in a floating-point unit fraction 

datapath present unique challenges in logic and circuit design. Specific design details are 

presented for all the area-intensive and time-critical datapath components in 2 micron 

CMOS, including: a multi-ported 87-bit register file (for exponent and fraction) design 

with access time of 17.7 nanoseconds; an optimized parallel-prefix 66-bit adder design 

with carry computation of 25 nanoseconds; a 67 -bit bi-directional shifter and decoder 

with embedded sticky bit generation, with a delay of 18.7 nanoseconds; and a compact 

67-bit leading-one's detector that evaluates in 15 nanoseconds. 

Techniques are developed for pipelining an iterative 64 x 8 multiplier to provide a 

64 x 64 multiply in nine iterations, with two iterations per clock cycle. Effectively, the 

inner loop provides the speed of a 64 x 16 multiplier, for significantly less area. The 

design of a radix-4 SRT divider is presented, that computes the iterations for an extended 

precision divide in 17 cycles. Even though two quotient bits are generated per iteration, 

pipeline stages are overlapped to allow parallelism between quotient selection and partial 

remainder formation, making it possible for four quotient bits to be generated every 

cycle. Consequently, we have a divider that provides the speed of radix-16 division for 

the area of only a radix-4 divider. Methods are outlined for the formation of the 

rounding bits -- Guard, Round and Sticky -- for multiplication and division, that requires 

minimal hardware without slowing down the iteration pipeline, and proceeds in parallel 

with formation of the final product. 



... 

Chapter 8 161 

Design details are presented for FPU control units, including instruction decoding, 

pipelining Load/Store instructions, state machine and cycle counter, and tradeoffs in PLA 

partitioning are discussed. Circuit design options and consequences in control unit 

design are explored, and a method is outlined for limiting clock skew or differential 

clock delay to within just 16% of processor cycle time. 

Scaling technology provides smaller, faster transistors, allowing more logic to be 

integrated onto a single chip. Floating-point unit speed-up will come from faster cycle 

times as well as from the possibility of implementing faster algorithms on a chip. Large, 

combinational multiplier arrays and high-radix prescale dividers look like promising 

candidates for speeding up these functions. It should soon be possible to integrate 

multiple, pipelined function units on a single chip, providing an order of magnitude faster 

execution with a factor of two scaling in technology. 

As floating-point computation speeds increase, effective memory access times must 

also decrease to allow utilization of the processors in the system. However, cache 

service times do not easily scale with technology, and may become the bottleneck of 

future shared-memory multiprocessor systems. ·Supporting fast scientific computation 

effectively with such systems may soon require the design emphasis to shift from 

arithmetic algorithms to faster memory systems to ensure that multiple, fast floating­

point units remain compute-bound and not limited by the memory. As technology scales 

from 2 microns to 0.5 micron, it should be possible to integrate large instruction and data 

caches onto the same chip, together with integer and floating-point processors. Projected 

sizes of instruction and data caches using static RAM design in 0.5 micron technology 

are 32KBytes and 256KBytes respectively. 



Chapter 8 162 

8.2. Future Work 

The work reported in this thesis can be developed and extended in several 

directions. As technology scales to smaller geometries, new circuit techniques will need 

to be developed to counter the effects of speed-up less than proportionate to density 

improvements. Operating circuits at lower temperatures [Hana85] and techniques for 

suppressing hot carrier generation [Saku85] appear promising. Investigation of design 

feasibility in other technologies, such as gallium arsenide, will become increasingly 

important as MOS approaches the limits of scaling around 0.1 micron in about a decade. 

Once again, area-time tradeoff analyses should help match the appropriate algorithms to 

available technology. 

Long before the limits of MOS VLSI scaling are reached, major design challenges 

await us. In algorithms, much work remains in exploring fast algorithms for divide, with 

possible extensions for square root. As multipliers are implemented with larger and 

larger combinational arrays, division times are unable to keep pace and will have to be 

speeded up. With more aggressive algorithms and higher device density, signal delay 

between logic blocks will become an increasingly larger percentage of the signal delay 

within blocks. This will require studies into alternative timing strategies [Wann83], 

including hierarchical clock generation and distribution techniques that will allow large, 

complex logic modules to run independently while being able to communicate 

synchronously with each other [Beau85]. 

As floating-point processors get faster with independent function units that are 

pipelined and possibly vectored, the problem of exceptions with out-of-order instruction 

execution will have to be addressed, so that interrupts are precise and can be traced back 



Chapter 8 163 

to a known and retrievable processor state. System partitioning with millions of 

available transistors on a single chip, or on multiple chips on a single wafer (Wafer Scale 

Integration), is an open architectural issue. As arithmetic units get faster, demanding new 

instructions every cycle, memory system design for fast scientific computation will be at 

least as important as the design of the computation algorithms themselves [Weis84] 

[Bose89]. 

Concomitant with higher levels of system integration, will be the need for more 

sophisticated computer-aided design tools [Newt87] that can support design efforts 

involving millions of transistors. Significant developments will be required in the areas 

of simulation at the behavioral level, good silicon compilation with logic and timing 

verification, with special emphasis on testability. 



Chapter 8 164 

8.3. References 

[Beau85] J. Beausang and A. Albicki, A Method to Obtain an Optimal Clocking 
Scheme for a Digital System, Proceedings of ICCD(October 1985), pp. 68-
72. 

[Bose89] B. K. Bose, P. M. Hansen, C. Lee and D. A. Patterson, VLSI 
Multiprocessor/Memory Interactions for Scientific Computation, accepted 
for publication in Journal of Parallel and Distributed Computing(1989). 

[Hana85] S. Hanamura, M. Aoki and T. Masuhara, Low Temperature CMOS 8x8b 
Multipliers with Sub IOns Speeds, Proceedings of ISSCC(February 1985), 
pp. 210-211. 

[Newt87] A. R. Newton and A. L. San giovanni-Vincentelli, Computer-Aided Design 
for VLSI Circuits, IEEE Computer, Vol. 19, No.4 (Aprill987). 

[Saku85] T. Sakurai, M. Kakumu and T. Iizuka, Hot-Carrier Suppressed VLSI with 
Submicron Geometry, Proceedings of ISSCC(February 1985), pp. 272-273. 

[Wann83] D. F. Wann and M. A. Franklin, Asynchronous and Clocked Control 
Structures for VLSI-based interconnection networks, IEEE Transaction on 
Computers, Vol. C-32, No.3 (March 1983), pp. 284-293. 

[Weis84] S. Weiss and J. E. Smith, Instruction Issue Logic in Pipelined 
Supercomputers, IEEE Transaction on Computers, Vol. C-33 (November 
1984 ), pp. 1013-1022. 



165 

... 

Appendices 



166 

Appendix 1: SPUR FPU die photograph 



167 

Appendix 2: SPUR FPU Instruction Set and Cycle Times 

Table A2.1: SPUR FPU Instruction Set and Cycle Times 
Instruction Instruction Semantics Latency in Cycles 

FADD Rd,Rs1,Rs2 FPU Rd <-- FPU Rs1 + FPU Rs2 4 
FSUB Rd,Rs1,Rs2 FPU Rd <-- FPU Rs1 - FPU Rs2 4 
FMUL Rd,Rs1,Rs2 FPU Rd <-- FPU Rs1 x FPU Rs2 9 
FDIV Rd,Rs1,Rs2 FPU Rd <-- FPU Rsl/ FPU Rs2 21 
FMOV Rd,Rsl,O FPU Rd <-- FPU Rsl 4 
FABS Rd,Rs1,0 FPU Rd <-- FPU Rs1, sign=O 4 
FNEG Rd,Rs1,0 FPU Rd <-- FPU Rs1, sign complemented 4 
FCMP cond,Rs 1 ,Rs2 FPSW <--result 4 
CVTS Rd,Rs1,0 FPU Rd <-- FPU Rsl, convert to single 4 
CVTD Rd,Rsl,O FPU Rd <-- FPU Rsl, convert to double 4 
LD_SGL Rd,Rsl,RC FPU Rd <-- M[(Rsl+RC)] 4 
LD_DBL Rd,Rs1,RC FPU Rd <-- M[(Rsl+RC)] 4 
LD_EXTl Rd,Rsl,RC FPU Rd <-- M[(Rsl+RC)] 4 
LD_EXT2 Rd,Rsl,RC FPU Rd <-- M[(Rsl+RC)] 4 
ST_SGL Rs2,Rsl,RC FPU Rs2 --> M[(Rsl+RC)] 4 
ST_DBL Rs2,Rsl,RC FPU Rs2 --> M[(Rsl+RC)] 4 
ST_EXTI Rs2,Rsl,RC FPU Rs2 --> M[(Rsl+RC)] 4 
ST EXT2 Rs2,Rsl,RC FPU Rs2 --> M[(Rs1+RC)] 4 

The instructions are gathered into two groups -- arithmetic and memory. There is an 
implicit conversion to the common internal format on a Load, while explicit conversion 
is necessary on a Store. A cycle is 100 nanoseconds, and consists of four phases each 
20 nanoseconds long and separated from the next by 5 nanoseconds. Arithmetic and 
memory operations may proceed simultaneously; back-to-back floating-point opera­
tions can overlap result write and next instruction fetch, effectively reducing the latency 
of each of the above instructions by one cycle. 



168 

Appendix 3: SPUR FPU Timing Waveforms 

phil 

fpuNewinstr 

ctrl-fpuBusy 

ctrl-inc-cycleclock 

ctrl-addop 

ctrl-start -arithop 

ctrl-latch-ops 

arith-expn-BgtA 

ce-latch-expndiff 

ce-adder 

ce-latch-dest 

ce-dest-to-busB 

cs-latch-dest 

cf-latch-opAB 

cf-latch-rshout 

cf-adder 

cf-latch-intenned 

cf-latch-roundata 

cf -latch-incout 

cf-nonnalize 

cf-latch-lshin 

cf-latch-lshout 

cf -latch -nonndist 

ctrl-read-fracregsA 

ctrl-insert-fpsw 

ctrl-write-regsB 

co Cl C2 C3 C4 

L_ __ ;_ ___ :r----+~----+--i'-+--+---!--T--i----!---:--i--;.-o---:---1 
I ' ' I 

•i ••· :. i, y·.· ~ . .:''---;----;----; I I I -
i i ~.vr~!---+--~--~~--~--+-_,~-+j--~--~~--~ 

r : 1 L--L-L--L .. :.v,.-;.!-+-+--+--+--~-+--:--;--+--+---i~.· : i 
I : : : ! :..__, 
! ! ! ! " vr-+: --!---; i ~ 
~ i i i r-r'-~~~~--~~~~~~~ 
i • · · I · • · I ,---:---:·--:---,---:·--:·--:---,---
l i i i i l l i i ~: ;: I : : : i : : : i 1.....-i---+---f---i---+---~-i:---f--+--il L ___ [... ___ [... ___ [... ___ L_ __ [..._ __ [..._ __ ~r""""li~-+----+---~-t----i~.·.. : !.1 1 
I : : : I : : i i'---f i 
1 : : : i : ~,...._.____,\ !.:n.·. :1. ! ! i' : : : . : r ~'----!~-+---+--~--:---+~' : ~ 
i i i i i 
11'---+--~--~-~~-~--~--;---~~----+---t--~--~--~--~--~~ 
i i !r-i. i i if"'i.:, I if"'i. :: ,---!" ... ---:~-+---+---+--:---:---off : ''-· ---:----:-: ---+i---:--f : ~ : ,..__.;.....___,; __ _, 
i ! i l--4 : : i : 
,---:--'---~-+---;---+-~---+---+1--...;..--+, ---!( i\ i i i : 

h ~ I ~ !--\~ ... ~--~--~--~~-~--+-___,;~_. 
~--+--+--+--+---~ .... """"1~-+-----~i---?;:v : i 
i : : : i : i ir---\ 
~---~ i 1 i i I f : ''-· ---"---+-~--.;......--;--_,______. 
i : : : i i ' i 
~--~:--~:--~:--~~--~~--~~--~~--~~!~! ~:~~~--~~--~~ I : ! : i : 

r---~~~i---+--~--,__~--~~v--\~-~---,__~~--~~ --+---~~~~~~--~ 
I i · · i i • · I i i, 
~---;----:----~ :r·-r-·--:---; ---;-- --1'----i----i---+----"----:---i---~---' 

~---! i i i i i i i i 
I 

Figure AJ.l. Timing waveforms for add instruction. 



phil 

fpu."<cwinstr 

ctrl· fpuBusy 

ctrl·inc-cycleclock 

ctrl·mulop 

ctrl-start-arithop 

ctrl·firstcycle-passivc 

clockl 

clock2 

ctrl-MDcycle-passivc 

ctrl-clear-cyclcclock 

ctrl-inc-cyclcclock 

ctrl-latch-muldiv 

ctrl-mul+div-latch 

em·latch-compmcd 

em-clear 

em-latch-master 

em-latch-slave 

em-bytcscl·mpril 

cf·adder 

cf-latch-intcrmcd 

cf-latch-roundata 

cf-latch·incout 

ce-latch·dcst 

cs-latch-dcst 

ctrl-gate·PPS+C-fracBus 

ctrl-read·fracregsA 

ctrl-insert·fpsw 

ctrl-write-regsB 

co Cl Cl C4 C6 C7 Cll 

i : ' 
r+-~~-+~+-~-+~~~-+~~+-~-+~+-~-+~~~~~~-~-~-+~' ~~ 

i : : 
i : : ~ 
i ' : i 
I I • ' I • I • l i 
~r1-~L~~ ~~,~~~~~~~~~-r~~~~~~~~~~. i 
I , , ii""TT"'7 I , , . il 
i : : ili : : rr:-n iAj 
I : : I ' I' : : : I : I 
H ili ~ I ; ; ! i l i1J ji !I ;ii,...W...W i 
t-~ i j j i , : : i ~ I 

H !i i!iii!m-ti \ H il! ¥ i ' ' ' ' ~ i : i i I 
I I I ' I I • I I : I 

I I i 
iihiihi i i fiJ i"""T"""! :'"'T'!""f :· I I : : I 
j i i i j i i i t : : : I : I 
I ' ' ' I ' ' ' !....l j !,...i : i, i-~ i i i i i i ~ J.j ~-i~....:-+-!-!-:..~~~+--!-!-+...:...lh'-~~....;...+-~-:..-ll 
~~~-~-~-+~-~-W i i ~:· : i i::: i::: i:: H: I 
t i i i i i ; i i i i , ~ i l, i
~: : : i : i : i lr!-+-H i
1 ~ 1 ! i i ! ! i r : l ' ~ ! ; lJ.-U..LH.J.-· : . . .
I : : : I : : : I : : I i-0-u-u-· j i i ' I
j i: i I:: i.n--t-ti: : 1, 1, I I I I I I I I :rn-n-p· . 1 : • -+--;-.;.....,H--i-...:...+-~~-+-;-~~--i-~+-+-1 ~+-~-+-+-~! I : : : I : : : I ' ' ! j I r-::-:-r-w.J i i i 1

1:::1:::1 n·: .::.i H ; ~~ i i i i i 1 • • • -+-+-......,-+~-...... --...... +-~~--~r :''-+1 ~,.....,. _ _,_........,!
l~~:+:~i~j~i+i~i~~~~~~~~~~~~~~~~i~~:. ···:.Y-~~1 ,~j iiI!! i i i ! , ~I! I i
'' ·' '' ·' ~ :,' i, M!,: :. ; ·1 ~;, ! : I ! ! ! ' ~ I I ~ j , 1 t I I I I I :'-i-1 ""'11~-i--i-+-i-+-i--i--i-+-i-+-:-"1-+-i-i-r-i--i-~1 -t-~H1 : , · I
~: ·i:::m: i ili..L
I : I, I : : • • I I : i i I

H I n: r.:. ruJj
i : ; i :

n·.· .· ~~~i~:.....;..: ...;.: i 11 I j : . · j : : : i
j i I j : j
~ i ! n .. i l : 1 i ! n .. i i
1 ! 1 1 ! r :'1

Figure A3.2. Timing waveforms for 'Multiply' instruction.

169

phil

fpuNewlnstr

ctrl-fpuBusy

ctrl-divop

ctrl-inc-cyc!eclock

ctr!-clear-cyclec!ock

ctrl- fi n;tcycle- passive

ctrl-MDcycle-passive

em-!atch-compmcd

an-clear

em-c!ear-div

em-latch-master

em-latch-slave

em-mux-dvr

ctrl-latch-muldiv

ctrl-mul+div-latch

ctrl-gate-PPS+C-fracBua

ctrl-gate-quotient-fracBus

ctrl-latch-remsign

cf-adder

cf-latch-intermed

cf-latch-roundata

cf-latch-incout

ce-latch-dcst

cs-latch-dcst

ctrl-read-fracregsA

ctrl-inscrt-fpsw

ctrl-write-regsB

170

i,,,i,,,l,,,l,,,l,,,l,,,l ,1,,,1,,,1,,,1,, 1,,,1,,,1 :' ':':1·':':':1· 1,,,1 ,,, I I I ""'Wtrrm"' ~ 1-:.:..:.1·: ..• _::1:::1:::1 :1:::1:::1:::1:: 1:::1:::1 1 ... 1 1:: :: :::1
i iiii: .. iiiii :!!1!!!1!:!1 11!!!1!!!1:!!1!: 1!!!1:::1 I! :I! ::1!!!1 1 .. 'i"· .. ·
riiiiiiijinjiiijiiijiiij jiiijiiijiiijii ji'ijiiij ii ijiiijiiij ;i~
i:::i:::,:::,:::,:::,:::, ,:::,:::,:::,:: ,: :,:::, ,: :i:::i:::i i!! i!;i:!!i!
~iiiilliiliiii:liiilil:·r iiiii'ilillli:i ii ;;;;;i il !i!ii!~~!! ''· '·'~
Wi iii i i Hi iii iii iii iii i i iii ii iii i iii i i iii iii i i : !: ; :! : i i! iii i i :: n:: i
i~r .. , ... , ... , .. ' 1 , .. ,, .. '· ,, ... ,. !: .. , ... , ... , i:: i:::rM-H
ili.i..l.iliJt1iiiiiil'iili i ilii iiiiliili ii iiiiii .. ,. iiilli:::i iii ililifW
!iii!iiiWii!i~l: :,:: ,::: ::,:::,:: '.:: ::1.:::·.::1. ::1: :1::: I ::1 1:: I :::1::: I n.l.i..LLLLJl.l..i..W.Jli: iii\ dlil lli!llii! 1 11' 1 1" 1 ~:;: :;:::; ::; j:: j!!:f1.ilj
li!iiiiihii!iiiii !iii iiiii iiiiiiiii iiiiiiiii iii !!iii! iii j:: iiiiiiiii
~~ ,, :i::: ::;:::::: ;:::;:::; :;: ,j.,,j .. 1 ! .. ;:::i:::; i:: : i: :: i i:: i i i : i: : i: :: i i i i: i :: i: i: i : i i::: i i :: i : i : : i: :; i iii i:: i i i: i: iii
I :::t: ::l:::t:::t: :t:::l :t:::t.::t:::l:: t:::t: ::1 ;,; ;,; ;; I ;;! 1:: 1 ... ,. ::-,
i J J i j J J J j J J i j i i J j J J j J J J j i j J i i j i i J i i J i j J i j iii j iii j ; I; :I::; j ; :I j i J j J i J j i f\j
iiiiiiiiiiiiiiiiii iii iii iiiiiliiiliiilii iiii iiiii iii iii iii iii iii i iiiiiii i
!\\\i\\\i\\\i\\\i\ \i\\\i \!\\\i\\\i\\\i\\ !\\\!\\\! \!\ \\\\\! jjj i:: !\\:!\\\!

Figure A3.3. Timing waveforms for 'Divide' instruction.

phil

fpuNewlnstr

ctrl-fpuBusy

ctrl-inc-cycleclock

ctrl-cvtsop

clock 1-cvrtop

ctrl-start -arithop

ctrl-latch-ops

arith-expn-BgtA

ce-latch -expndiff

ce-adder

ce-latch-dest

ce-dest-to-busB

cs -latch -dest

cf-latch-opAB

cf -latch-rshout

cf-adder

cf -latch- in termed

cf-latch-roundata

cf-latch-incout

cf -normalize

cf-latch-lshin

cf-latch-lshout

cf -latch -norrndist

ctrl-read-fracregsA

ctrl-insert-fpsw

ctrl-write-regsB

co Ct C2 C3 C4

!
I : : : . ,__._-;--+--+--i--+--+--i-_;.,--+--i--i' I r---:---:--t -~-~-_;_~r H
i A i r. : : ~ -~--___. _ _,_....;..,.___. _ _,_-+-__,__~
!' ! v--r-.. i
I : : : I : : j : i
r----+----1---i---;---t---f---f----r-- :--' -+--i-+-+--i-+-+--+-+-+-~
i i i i i i ; ; i :.~ ·:.'--+--+-~--~~~~~~--+-~! " : : : i : : : I '! ~' I

~---~--L_L_i---\--- 1 __ J,..._._i -----~ . ._-!. __ .._~vr-_ ____._..._ _ ____. __ v-i
i ! i ! i i

~--~~--+--+i--+--+--+--+i--~.~~'--+i--~-+--~-+--~-+--~~
~---?- l h'--:-+. -+1 -..;....-:---;.-+--i---;.-..;....---i
i ; i i ; ir--\
~--""?' I i i ~ i''--i--i--+--i--i---i-----i

~'-~!~-+--!~~~~-~!~!~~~~~-~~-+~~~~~
~---~--+---~---L-L"-i--+--+i.-~~:: r---:-+-+1 --+--:----+-+--:----+--+----t
I : : : I : - i
i_ : : : i : i ·n·
i ---r- : : i : i i : :
lL~:~-+-~i-+-~-+-r! ~-~~-ri--i~'--r-+--~+-~i 1- I I , I , : : j
L_ : , ~~ i i i ;,.. I
i --1' . . r 1""'....-_ __.__,.1_..;·-----· -----r '''-·....-,___.__ ... --II
i----l----i---~""--~-..:..,_ vr--~ ___.._.._-+----~ ~'----_,___,__. -+' _..__,___---;::~ i
i : : : i i I , :--,

i----\ : : i i n : i
j i I I : : : I .. ' ··~· 1, : I I : : : I
j ! I ! I ' I
I-' __ _;, : ~.. ',..--i, : : '

"' [I !\ V i\ i i I j i I i '----+-------:---+----4--~1 :, · ' I
~ i v--i\ I i I :'--~~--~--;-~--_;__~--__._--~. --~.~~
' ' ' ir--X: :' ~ I : r :'---< ~~~---i--~--~~--+---+--41--~--i-~--~-+--~-i--~--;-~: : I
~~~~-+~--~~~~i--~+-~~-+-+~--~---~ 
I I ' : I 
i I i i 
I i i i 

Figure A3.4. Timing waveforms for 'Convert (to) Single' instruction. 

171 



phil 

fpuNewinstr 

instr-loadop 

ctrl-fpuBusy 

ctrl-inc-cycleclock 

cldecode-Mlatch-storefrac 

cldecode-Mlatch-storerest 

cl-Mstate-second 

cl-Sstate-second 

clmem-Mlatch-load 

clmem-Slatch-load 

cl-Mstate-memory 

cl-Sstate-memory 

ctrl-LD+STwrite-state 

clwrite-lddbl 

ctrl-latch-regnumbA 

ctrl-write-fracregsA 

172 

co C1 C2 C4 

~+-~~-+~--~+-~k~~~:--~~~~~--~~~~~~ 

~ ~~ioo~j~~~~~~-+~ 
i : : 

~~_.--~~-+--~~~--+-_.~~~-+~--~~~--+-~~~~~ 
ri ~~+-+-~~~-+~~~~~~~:~~~~~~ 
i i ~=~:....:-; ~__,_-:---:---:---t 
: 14soo 

: : : : : : : : : I : : : I =;;~--i---:-----t 

~--t·-1---j---~-·-t-·-+-·i·-·t-·i·-·t·-·t·--t·-·i·--~·-t·-~ ..... --t----+---i 

Figure A3.5. Timing waveforms for 'Load Double' instruction. 



'· 

phil 

fpuNewinstr 

instr-ston:op 

ctrl-fpuBusy 

ctrl-inc-cycleclodc 

cldecode-Mlatch-storclrac 

cldecode-Mlatch -st.orerest 

cl-Mstate-second 

cl-Sstate-second 

clsecond-Slatch-store 

clsecond-stsgl 

clmem-store 

ctrl-read-fracregs A 

ctrl-activate-datapins 

ctrl-storecycle-passive 

173 

a C2 C3 c• 

I 

! 
r. --:-. --:-. --:'--+--~--~~--_.:--~--~~--~--~--~~--~----~--~~ 
~~ -.i~i--+-~~~--~+i~V ~~~_.~ 
! : lr-~1--~------~~--~--._--~-+--~----~ 
~! --i--~----~~--~~--~~ ! ! 

~~~~--~--~~~~~--:--~~--~~--~~~~~~ 

: ~~~~~-----~~-+-+-~~
! : :

t:=t:=t:=!=:=t=:i=:j=:j:=:±-----~.;..: -----~-----~t-._-_+(_.___,___;,_+-....... ___, _ _,__,
I : : ' I ! : : I ! ' : I -~--.;_--.;_-;.--~--.;__; __ -i
l:: i::: n·. : i
I ' ' I ' ' ' ' !'-· ~~·~~~-+-~ -~~-~~~
i i i i i

Figure A3.6. Timing waveforms for 'Store Single' instruction.

